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Abstract
Can Shamir’s secret-sharing protect its secret even when all shares are partially compromised?

For instance, repairing Reed-Solomon codewords, when possible, recovers the entire secret in the
corresponding Shamir’s secret sharing. Yet, Shamir’s secret sharing mitigates various side-channel
threats, depending on where its “secret-sharing polynomial” is evaluated. Although most evaluation
places yield secure schemes, none are known explicitly; even techniques to identify them are unknown.
Our work initiates research into such classifier constructions and derandomization objectives.

In this work, we focus on Shamir’s scheme over prime fields, where every share is required to
reconstruct the secret. We investigate the security of these schemes against single-bit probes into
shares stored in their native binary representation. Technical analysis is particularly challenging
when dealing with Reed-Solomon codewords over prime fields, as observed recently in the code
repair literature. Furthermore, ensuring the statistical independence of the leakage from the secret
necessitates the elimination of any subtle correlations between them.

In this context, we present:
1. An efficient algorithm to classify evaluation places as secure or vulnerable against the least-

significant-bit leakage.
2. Modulus choices where the classifier above extends to any single-bit probe per share.
3. Explicit modulus choices and secure evaluation places for them.
On the way, we discover new bit-probing attacks on Shamir’s scheme, revealing surprising correlations
between the leakage and the secret, leading to vulnerabilities when choosing evaluation places naïvely.

Our results rely on new techniques to analyze the security of secret-sharing schemes against side-
channel threats. We connect their leakage resilience to the orthogonality of square wave functions,
which, in turn, depends on the 2-adic valuation of rational approximations. These techniques, novel
to the security analysis of secret sharings, can potentially be of broader interest.
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1 Introduction

Secret-sharing schemes protect their secrets when only a few shares are compromised.
Side-channel attacks have repeatedly circumvented their security by accumulating partial
information from all shares [36, 37, 12]. For instance, repairing Reed-Solomon codes [27, 28],
when possible, recovers the entire secret in the corresponding Shamir’s secret sharing [60]
by downloading a small amount of information per share. More alarmingly, ingenious side-
channel attacks have revealed critical information about cryptographic secrets (without
completely recovering them). Securing our secret-sharing schemes against various side-
channel threats has become even more compelling due to the ongoing NIST standardization
efforts [10], considering their wide use in key distribution [51, 64], masking schemes [12, 25],
and other higher-level primitives like secure computation [22].

Local leakage resilience [4, 26] is a security metric for secret sharing against a broad
spectrum of side-channel threats that leak from each share independently. Local leakages are
surprisingly powerful; even single-bit probes into every share partially reveal an additively
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shared secret [43, 1, 45, 19]. Shamir’s secret-sharing is a more promising alternative – its
security depends on where its secret-sharing polynomial is evaluated. Most evaluation
places, in particular, ensure that the cumulative leakage from bit probes into shares is
statistically independent of the secret [43, 47]. However, not one choice is known explicitly;
even techniques to identify them have yet to be discovered. As a result, NIST can neither
recommend evaluation places for Shamir’s secret sharing nor certify their security against
such attacks. Towards alleviating this situation, it is natural to wonder:

Question: Is there an algorithm to determine whether the picked evaluation places
yield a locally leakage-resilient Shamir’s secret sharing?

Any meaningful classifier in this context must have the following features.

1. No false positives. No evaluation places can be incorrectly determined to be leakage-
resilient; otherwise, they could be picked unbeknownst to the honest parties.

2. A small number of false negatives. Ideally, the algorithm should correctly identify most
(or at least a significant fraction) of the leakage-resilient evaluation places.

3. Efficiency. The runtime of the classifier should not be “prohibitively large.”

In fact, explicitly identifying secure evaluation places would be ideal. Our work initiates
research into such classifier constructions and derandomization objectives.
Summary of our results. We consider Shamir’s schemes where shares of all parties
are required to reconstruct the secret and investigate their security against arbitrary single
bit-probe in each share. We present such classifiers for Mersenne and Fermat prime modulus.
Our algorithms have poly(log p) running time and √p · poly(log p) false negatives for prime
modulus p. For the two-party case, we present secure evaluation places explicitly. The
technical workhorse is our classifier for the specific leakage that obtains each share’s least
significant bit (LSB); this classifier works for arbitrary prime modulus. Our classifier is
accurate; we present new bit-probing attacks on those identified to be insecure.
Summary of our key technical challenge. For an arbitrary prime modulus p ⩾ 3,
define the function LSB: Fp → F2 by LSB(x) := 0, for x ∈ {0, 2, . . . , (p − 1)}; otherwise,
LSB(x) := 1. Fix arbitrary elements α1, α2 ∈ Fp.

Technical Question: For a uniformly random X ∈ Fp,
are the distributions LSB(α1 ·X) and LSB(α2 ·X) statistically independent?

Answering this technical question is challenging because x 7−→ LSB(x) is a non-linear map.
Linear maps are either (perfectly) independent or (completely) correlated; answering this
question for them is easy. Subtle correlations can surreptitiously manifest between non-linear
maps, which is the case here. The pattern of (α1, α2) resulting in statistically independent
distributions is highly non-trivial. We prove that it depends on the 2-adic valuation of their
rational approximation; our classifier algorithm is outlined below.

1. Solve for relatively prime integers u, v ∈
{
−
⌈√

p
⌉
, . . . , 0, . . . ,

⌈√
p
⌉}

such that
u · α2 = v · α1 mod p.

2. Distributions are independent if (and only if) u/v has non-zero 2-adic valuation; i.e.,
either u or v is even.

3. Otherwise, for odd u and v, the 2-adic valuation of u/v is 0, and the dependence
between these two distributions is 1/|u · v|. When this dependence is significant, we
identify new side-channel attacks.
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The connection between 2-adic valuations with security of secret sharings is novel and
possibly of broader interest. Our work highlights the challenges in determining the leakage
resilience of secret sharing. There are several natural follow-up questions; Section 3 presents
a few and the hurdles in approaching them.
▶ Remark 1 (Recent relevant works). Maji et al. [47] and, very recently, Nguyen [52] drew
inspiration from our approach and constructed such classifiers over characteristic-2 composite-
order fields. The analogous map in their technical analysis is F2-linear, making their
technical question approachable via elementary “rank arguments” (a.k.a., dual distance of the
concatenated Reed-Solomon codes over the binary alphabet). Analyzing non-linear leakage
in the related literature on repairing Reed-Solomon codewords has also been technically
challenging; non-linear repairing was only recently addressed [15, 14]. Appendix B summarizes
this discussion and other prior relevant works motivating this research.
▶ Remark 2 (Other leakage-resilient alternatives). The additive and Shamir’s schemes are
deployed widely. It is crucial to determine their security; this work contributes to this effort.
New constructions (like [6, 2, 61, 3, 39, 7, 20, 61, 21, 33, 13, 49, 11]) cannot match their
simplicity and high information rate or replace them in security technologies.

1.1 Basic Definitions & Our Formal Problem Statement
Shamir’s secret sharing. Shamir’s secret-sharing scheme among n parties with reconstruction
threshold k over a finite field F and distinct evaluation places α1, α2, . . . , αn ∈ F ∗ proceeds as
follows. To share a secret s ∈ F , sample a random F -polynomial P (X) such that degP < k

and P (0) = s. Define the shares: s1 := P (α1), s2 := P (α2), . . . , and sn := P (αn). Denote
this secret-sharing by ShamirSS(n, k, α⃗) and the joint distribution of the shares by Share(s) –
other parameters will be clear from the context. This work only considers n = k.
Representing prime field elements. Consider a prime field Fp of order p, where
2λ−1 < p < 2λ and λ is the security parameter. The elements of Fp are represented as λ-bit
binary strings representing the elements {0, 1, . . . , (p− 1)}.
▶ Remark 3. For a Fermat prime p = 2λ + 1, elements of Fp require (λ + 1) bits in their
binary representation. However, only the binary representation of 2λ has 1 in the most
significant bit. For simplicity of presentation, we assume that elements are represented using
λ bits only; disregarding the element 2λ ∈ Fp adds only an additive 1/p slack to the analysis.

Leakage functions & families. This work studies physical bit leakage PHYSi : Fp → {0, 1}
that outputs the i-th least significant bit, where i ∈ {0, 1, . . . , λ− 1}. For example, PHYS0
(also referred to as LSB) outputs 0 for the elements in {0, 2, . . . , (p− 1)}, where p ⩾ 3, and
PHYS1 outputs 0 for the elements in {0, 1, 4, 5, . . . }. For i = (i1, i2, . . . , in) ∈ {0, 1, . . . , λ−
1}n, the leakage function ⃗PHYSi : Fn → {0, 1}n leaks the it-th bit of the t-th share, where
t ∈ {1, 2, . . . , n}. For a secret s ∈ F , the joint distribution of the leakage is ⃗PHYSi(Share(s)).
We consider two leakage families.

1. Physical bit leakage family: PHYS :=
{

⃗PHYSi : i = (i1, . . . , in) ∈ {0, 1, . . . , λ− 1}n
}

.

2. LSB leakage family: LSB :=
{

⃗PHYS0

}
, where 0 = (0, 0, . . . , 0)

Insecurity & randomized construction. Insecurity of ShamirSS(n, k, α⃗) against a leakage
family F is:

εF (α⃗) := max
f∈F

max
s∈F ∗

SD( f(Share(0)) , f(Share(s)) ). (1)

ITC 2025
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Low insecurity indicates the statistical independence of the leakage from the secret, i.e., the
secret-sharing is locally leakage-resilient [4, 26]. Recently, Faust et al. [19] connected this
definition to practice.

High insecurity indicates a leakage function can distinguish the secret 0 and some s∗ ∈ F ∗

using the leakage. Maji et al. [43] analyzed the insecurity against the PHYS leakage family
when evaluation places were chosen randomly. Their result implies the following corollary
for prime modulus p ⩾ 3 and n = k ⩾ 2.

For randomly chosen evaluation places α⃗ ∈
(
F ∗

p

)n, the insecurity εPHYS(α⃗) ⩽ p−1/2 with
probability ⩾ 1− p−1/2.

Recently, [47] extended the randomized construction from prime fields to composite ones.
Our work investigates the security against the leakage family PHYS; i.e., the adversary

obtains arbitrary one physical bit leakage from each share. Our research question can be
rewritten using these terminologies and notations as follows.

Our Research Question: Given evaluation places α⃗ and prime modulus p,
identify whether (1) εPHYS(α⃗) ⩽ p−1/2 or (2) εPHYS(α⃗) > p−1/2.

If εPHYS(α⃗) > p−1/2, then output a secret s∗ ∈ F ∗
p such that the shares of 0 can be

distinguished from the shares of s∗ with (roughly) εPHYS(α⃗) advantage. All algorithms must
be computationally efficient – runtime is a polynomial in λ; i.e., poly(log p). Furthermore,
concrete security analysis (over asymptotic analysis) is prioritized.

1.2 Our Results
Below, for x, y, z ∈ R, the expression x = y±z is a concise representation for “x ∈ [y−z, y+z].”
For example, “x is close to y” is expressed using x = y ± ε, for a small ε. Section 2 presents
a high-level overview of the critical technical ideas underlying our results.
Technical Result: Security against LSB Leakage when n = 2 (Section 4). Consider
arbitrary prime p ⩾ 3 (not just a Mersenne/Fermat prime) and the LSB leakage. The
technical workhorse for our results is the classifier for (n, k) = (2, 2); other results bootstrap
from it.
1. Figure 1 presents our efficient algorithm to classify α⃗ as secure or not. If our algorithm

classifies α⃗ as secure, then Corollary 14 and Corollary 15 shows that

εLSB(α⃗) ⩽ 1 + 85/4
√
p

+ 13/2
p

⩽
14.46
√
p
,

which is exponentially small in the security parameter λ. The number of false negatives
is O

(√
p · log p

)
.

2. We present an efficient adversary (Corollary 16) that generates s∗ ∈ F ∗ such that it
distinguishes the secret 0 from s∗ by leaking the LSB of each share with an advantage

⩾ εLSB(α⃗) − 2 · 85/4
√
p
− 13

p
⩾ εLSB(α⃗)− 26.91

√
p
.

Therefore, our efficient leakage attack achieves a comparable distinguishing advantage
when the insecurity εLSB(α⃗) is significant.

Result A: Security against Physical Bit Leakage when n = 2 (Section 5). For the
n = k = 2 case, we analyze a prime field Fp, where p is a Mersenne/Fermat prime – primes
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of the form 2λ ± 1. We reduce arbitrary physical bit leakage to LSB leakage for related
evaluation places over these fields. In this context, our work proves the following results.
1. Figure 2 presents our efficient classifier against PHYS leakage. For α⃗ that is classified

secure, Corollary 19 shows that the insecurity is εPHYS(α⃗) ⩽ 14.46/√p and the number
of false negatives is O

(√
p · (log p)2

)
.

2. We present an efficient adversary that generates (s∗, f) ∈ F ∗
p × PHYS such that it

distinguishes the secret 0 from secret s∗ by leaking f ∈ PHYS from the shares with an
advantage ⩾ εPHYS(α⃗)− 26.91/√p. These are new side-channel attacks; their existence
demonstrates the tightness of our analysis and accuracy of our classifier.
This is direct consequence of the properties of Mersenne and Fermat primes and Corollary 16;
Appendix F has the details.

3. We explicitly identify secure evaluation places against PHYS leakage: all (α1, α2) satisfying
α2 · α−1

1 ∈
{
γ, −γ, γ−1, −γ−1 }, where γ = 2⌊λ/2⌋ − 1. For these evaluation places,

we get εPHYS(α⃗) ⩽ 8.49/√p, which Corollary 20 and Corollary 21 prove. Appendix I
provides an example for Mersenne prime p = 213 − 1.

Result B: Security against Physical Bit Leakage when n > 2 (Section 6). Consider a
prime field Fp such that p = 2λ ± 1 a Mersenne/Fermat prime. Figure 2 presents an efficient
classifier for α⃗ such that the corresponding ShamirSS(n, n, α⃗) is secure to physical bit probes;
the insecurity is at most 1/√p, as shown in Corollary 23 (Appendix G presents the proof).

Given evaluation places α⃗ := (α1, α2, . . . , αn) we efficiently compute an appropriate
β⃗ := (β1, β2, . . . , βn) (see Equation 3). Corollary 23 proves that if ShamirSS(2, 2, (β1, β2))
has ε-insecurity against physical bit leakage, then ShamirSS(n, n, α⃗) has 2ε-insecurity against
physical bit leakage. Clarifications below highlight the subtlety of this classifier:

▶ Remark 4 (Clarifications). 1. High insecurity of ShamirSS(2, 2, (β1, β2)) does not imply high
insecurity of ShamirSS(n, n, α⃗); our result lifts security only in one direction.

2. Can the security of ShamirSS(2, 2, (αi, αj)), for all 1 ⩽ i < j ⩽ n, imply the security of
ShamirSS(n, n, α⃗)? This natural classifier has false positives. Consider n = 3, a prime
p = 4w2 + 6w + 9, and evaluation places α⃗ = (1, σ, σ2), where w ⩾ 4, w ̸= 0 mod 3,
and σ = 2w · 3−1. For example, p = 97 and σ = 35; Bunyakovsky conjecture [9] implies
infinitude of such primes. Against LSB leakage, although every ShamirSS(2, 2, (αi, αj))
is secure, ShamirSS(n, n, α⃗) is (2/π)3 > 0.25 insecure [45, 19]; Appendix H presents the
details.

So, the following randomized strategy suffices to construct secure schemes: (1) randomly
sample α⃗, (2) compute β⃗ using our map in Figure 3, and (3) test the security of ShamirSS(2, 2, (β1, β2))
using Corollary 19.

We also present explicit secure evaluation places for n = k > 2 case by bootstrapping
from the explicit secure evaluation places for n = k = 2 case in Appendix I. For example,
α1 = (n− 1), α2 = (n− 1)− (1 + γ), and αj = (j− 2) · (γ+ 1), for j ∈ {3, 4, . . . , n}, is secure
against one physical bit probe per share if (1, γ) is secure evaluation place for n = k = 2 case.
Specifically, γ =

√
(p± 1)/2− 1 suffices for Mersenne/Fermat prime modulus.

2 Technical Overview

2.1 Technical Result: LSB Leakage (n, k) = (2, 2)
For any prime field Fp, we outline our classification algorithm for (n, k) = (2, 2) and, en
route, highlight our technical contributions (Figure 1 presents the pseudocode).

ITC 2025
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Input. Distinct evaluation places α1, α2 ∈ F ∗

Output. Decide whether the evaluation places (α1, α2) are secure to the LSB leakage
attack
Algorithm.
1. Define the equivalence class

[α1 : α2] :=
{

(u, v) : u = Λ · α1, v = Λ · α2,Λ ∈ F ∗
}
.

Use the LLL [40] algorithm to (efficiently) find (u, v) ∈ [α1 : α2] such that

u, v ∈ {−B,−(B − 1), . . . , 0, 1, . . . , (B − 1), B} mod p,

where B :=
⌈
23/4 · √p

⌉
. Refer to Figure 4 in Appendix C.

2. Remark: Our algorithm interprets u, v ∈ {−B, . . . , 0, 1, . . . , B} mod p as integers below.
3. Compute g = gcd(u, v).
4. If u · v/g2 is even: Declare ShamirSS(2, 2, (α1, α2)) is secure against LSB leakage
5. (Else) If u · v/g2 is odd and

∣∣u · v/g2
∣∣ ⩾ √p: Declare ShamirSS(2, 2, (α1, α2)) is secure

against LSB leakage
6. (Else) Declare that the security of ShamirSS(2, 2, (α1, α2)) against LSB attacks may be

insecure

Figure 1 Identify secure evaluation places for Shamir’s secret sharing against LSB leakage.

Step 1. The prime modulus p and the distinct evaluation places α1, α2 ∈ F ∗
p are inputs

to the LSB classification algorithm. The security/vulnerability of evaluation places (α1, α2)
is identical to any evaluation places (u, v) satisfying α1·α−1

2 = u·v−1 (follows from Generalized
Reed-Solomon codes’ properties [30]). We find “small norm” u, v ∈

{
−
⌈√

p
⌉
, . . . , 0, 1, . . . ,

⌈√
p
⌉}

with the property mentioned above – a Dirichlet approximation problem. We solve it with a
small constant multiplicative slack using the LLL [41] algorithm in poly(λ) runtime, where
λ := ⌈log2(p+ 1)⌉ (Appendix C has the details). The reasoning for choosing “small norm”
u, v will be evident below in Step 3.
Step 2. We proceed to solve the technical question from Page 2: determine whether the bits
LSB(u ·X) and LSB(v ·X) are statistically independent, for uniformly random X ∈ Fp. We
will calculate the similarity/dependence between these two distributions, which is equivalent
to the bias ε of the distribution LSB(u ·X) ⊕ LSB(v ·X). In this context, the bias is the
probability that LSB(u ·X) = LSB(v ·X) minus the probability that LSB(u ·X) ̸= LSB(v ·X).
Appendix A presents some elementary failed attempts with examples; the challenge is to
estimate ε efficiently and accurately.
Step 3. To develop an efficient algorithm to compute ε, we express the quantity ε as the
inner product of two oscillatory {±1} sequences, approximated by the following integral.∫ 1

0
sign sin(2π|u| · t) · sign sin(2π|v| · t) dt.

Here, sign sin(2π|u| · t) ∈ {±1} is a square wave that oscillates |u| times in the domain [0, 1].
The integral above measures the similarity/dependence between the two square waves, the
first oscillating |u| times and the second oscillating |v| times. We provide an illustration of
the integration of square waves in Appendix J. The error of our approximation is directly
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proportional to the total number of oscillations of the square waves. The approximation error
is ⩽ (|u|+ |v|)/p = O

(
1/√p

)
, exponentially small in λ, for small norm u, v. For simplicity,

the presentation below ignores this approximation error. See Appendix J for visualizations.
Step 4. Finally, we present a closed-form expression for the integral; thus computing the
bias ε. For g := gcd(|u|, |v|) and ρ := |u| · |v|/g2, we prove that:

ε =
{

0, if ρ is even
1/2ρ, if ρ is odd.

Step 5. Consider the ε = 0 case. This happens when the highest powers of 2 dividing |u|
and |v| differ. In this case, we prove that LSB(u ·X + s) is independent of LSB(v ·X + s),
for every secret s ∈ Fp. Technically, we prove the following integral representing the bias for
this general case – a phase-shifted integral from Step 2 above – is 0 for all δ ∈ [0, 1).∫ 1

0
sign sin(2π|u| · t) · sign sin(2π|v| · t+ 2π · δ) dt.

Note that the marginal LSB(u ·X + s) is a uniformly random bit, and so is the marginal
LSB(v · X + s). Therefore, these leakage bits are uniformly and independently random.
Furthermore, the distribution of (u · X + s, v · X + s), for uniformly random X ∈ Fp, is
identical to the distribution of the shares (s1, s2) = (α1 ·X + s, α2 ·X + s) by properties
of General Reed-Solomon codes [30]. Consequently, Shamir’s scheme is secure in this case
because all secrets produce identical leakage distribution.

When ε ̸= 0, |u| and |v| have the identical highest power of 2 dividing them. Theorem 10
presents a (closed-form) expression for a secret s∗ ∈ F ∗

p such that the distributions of LSB
leakage for secret 0 and secret s∗ are distinguishable with an advantage of ε. We achieve this
by giving the formula for the δ∗ ∈ {1/p, 2/p, . . . , (p− 1)/p}, such that the following integral’s
value is farthest from ε.∫ 1

0
sign sin(2π|u| · t) · sign sin(2π|v| · t+ 2π · δ∗) dt

We then reconstruct s∗ from this δ∗.

Our classification algorithm for arbitrary physical bit probes will build on the classifier
outlined in this section.
▶ Remark 5. Our work connects the security of secret-sharing schemes against leakage attacks
with the orthogonality properties of a family of square waves [63, 32, 31]. Various families of
square waves, like the ones by Haar [29], Walsh [65], and Rademacher [55], are central to
science and engineering. These techniques are new to the security analysis of secret sharings
and possibly of broader interest.

2.2 Overview of Result A: Physical Bit Leakage (n, k) = (2, 2)
Suppose the evaluation places are α⃗ = (α1, α2). We aim to determine whether Shamir’s
secret-sharing scheme with these evaluation places is secure against all physical bit leakage
attacks in Mersenne prime fields. For i, j ∈ {0, 1, . . . , λ−1}, consider the physical bit leakage
attack ⃗PHYSi,j . This leakage attack leaks the i-th LSB of the share s1 and the j-th LSB of the
share s2. For a Mersenne prime p and an element x ∈ Fp, the binary representation of x · 2−1

is the right rotation of the binary representation of x by one position. Therefore, ⃗PHYSi,j

leakage with evaluation places (α1, α2) is identical to the LSB leakage with evaluation places

ITC 2025
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(2−i · α1, 2−j · α2). By Generalized Reed-Solomon codes’ properties [30], the leakage is
identical to the LSB leakage with evaluation places (2j−i · α1, α2). Consequently,

εPHYS( (α1, α2) ) = max
{
εLSB( (α1, α2) ), εPHYS( (2α1, α2) ), . . . , εPHYS( (2λ−1α1, α2) )

}
.

Thus, security against PHYS leakage reduces to a sequence of LSB security estimations.
Figure 2 presents this pseudocode.
▶ Remark 6 (An Edge Case). The algorithm determining the security of Shamir’s secret-
sharing scheme to LSB attack requires the evaluation places to be distinct. Even though α1
and α2 are distinct, it may be the case that 2tα1 = α2, for some t ∈ {0, 1, . . . , λ− 1}. So, the
call to the “LSB security check subroutine” with the argument (2tα1, α2) would be invalid.
Lemma 18 proves that this edge case is insecure. This case captures why evaluation places
(1, 2) are insecure against physical bit leakage.

Input. Distinct evaluation places α1, α2 ∈ F ∗
p , and p is a Mersenne/Fermat prime.

Output. Decide whether the evaluation places (α1, α2) are secure to an arbitrary single
physical bit leakage per share.
Algorithm.
1. If there is t ∈ {0, 1, . . . , λ− 1} such that 2tα1 = α2: Return insecure
2. For t ∈ {0, 1, . . . , λ− 1}:

a. Call the algorithm in Figure 1 with evaluation places (2tα1, α2)
b. If the algorithm returns “may be insecure,” return may be insecure

3. Declare ShamirSS(2, 2, (α1, α2)) is secure against physical bit attacks.

Figure 2 Identify secure evaluation places for Shamir’s secret sharing against physical bit leakage.

For Fermat prime p, x ∈ Fp, and i ∈ {1, 2, . . . , λ− 1} we prove following identity.1

PHYSi−1(x) = PHYSi(2x+ 1). (2)

Therefore, PHYSi(x) = LSB(2−i ·x+2−i−1). Like the Mersenne prime case above, arbitrary
physical bit leakage translates into LSB leakage, except the map here is an affine map instead
of a linear map. As a result, the secret s∗ ∈ F ∗

p witnessing the maximum insecurity is
different; it is still efficiently computable. See Section 5.1 for details.
▶ Remark 7. Investigating Mersenne prime modulus in the context of Shamir secret-sharing
has also been done by Faust et al. [19]; the ideas to analyze Fermat prime modulus are new.

2.3 Overview of Result B: Physical Bit Leakage n = k > 2
Our objective is to choose n distinct evaluation places α1, α2, . . . , αn ∈ F ∗ such that the
corresponding ShamirSS(n, n, α⃗) is secure against physical bit leakage attacks. We prove a
lifting theorem (Theorem 22) that proves the following result. Given evaluation places α⃗,
consider β⃗ related to Lagrange multipliers (where i ∈ {1, 2, . . . , n}):

βi :=

αi

∏
j ̸=i

(αi − αj)

−1

. (3)

1 For primes other than Mersenne and Fermat primes, there is no such affine transformation.
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Now consider the ShamirSS(2, 2, (βi, βj)) secret-sharing scheme for all distinct i, j ∈ {1, 2, . . . , n}.
Suppose one of these secret-sharing schemes is secure against physical bit leakage. In that
case, the ShamirSS(n, n, α⃗) secret-sharing scheme is also secure. More concretely, if the
insecurity of ShamirSS(2, 2, (βi, βj)) is ε, for some distinct i, j ∈ {1, 2, . . . , n}, then the
ShamirSS(n, n, α⃗) secret-sharing scheme is (at most) 2ε insecure.

Whether the evaluation places of ShamirSS(2, 2, (βi, βj)) is secure or not can be determined
efficiently using our algorithm in Figure 2. We can use this algorithm to detect if our chosen
α⃗ has such a secure (βi, βj) pair of evaluation places. Corollary 23 formally states this result;
its proof is entirely Fourier-analytic – Appendix G presents the necessary Fourier analysis
background and proves it.

Input. Distinct evaluation places α⃗ = (α1, α2, . . . , αn) ∈ (F ∗
p )n, and p is a Mersenne or

Fermat prime
Output. Decide whether the evaluation places α⃗ are secure to all physical bit leakage
attacks
Algorithm.
1. For i ∈ {1, 2, . . . , n}, compute

βi :=

αi

∏
j ̸=i

(αi − αj)

−1

.

2. If there exist 1 ⩽ i < j ⩽ n such that ShamirSS(2, 2, (βi, βj)) is secure per the algorithm
in Figure 2, then declare that ShamirSS(n, n, α⃗) is secure.

3. Otherwise, the algorithm states that ShamirSS(n, n, α⃗) may be insecure.

Figure 3 Identify secure evaluation places for ShamirSS(n, n) against physical bit leakage.

▶ Remark 8. Analyzing this classifier has some subtleties. The α⃗ 7→ β⃗ mapping is not a
bijection; few β⃗ have multiple preimages, most have one, and some have none. We prove
that (β1, β2) are (nearly) independent when α⃗ is chosen uniformly at random, for n ⩾ 3.
▶ Remark 9 (Clarifications).
1. High insecurity of ShamirSS(2, 2, (β1, β2)) does not imply high insecurity of ShamirSS(n, n, α⃗);

our result lifts security only in one direction.
2. Can the security of ShamirSS(2, 2, (αi, αj)), for all 1 ⩽ i < j ⩽ n, imply the security of

ShamirSS(n, n, α⃗)? This natural classifier has false positives. Consider n = 3, a prime
p = 4w2 + 6w + 9, and evaluation places α⃗ = (1, σ, σ2), where w ⩾ 4, w ̸= 0 mod 3,
and σ = 2w · 3−1. For example, p = 97 and σ = 35; Bunyakovsky conjecture [9] implies
infinitude of such primes. Against LSB leakage, although every ShamirSS(2, 2, (αi, αj))
is secure, ShamirSS(n, n, α⃗) is (2/π)3 > 0.25 insecure [45, 19]; Appendix H presents the
details.

3 Future Research Directions

There are several natural research directions for future work. A few immediate ones and
their respective technical hurdles are presented below.
LSB classifier construction for n > 2. To illustrate the challenges, consider n = 3
and evaluation places (α1, α2, α3). The rational approximation problem will require finding
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small-norm u, v, w such that α1 : α2 : α3 = u : v : w. Dirichlet approximation theorem only
guarantees |u|, |v|, |w| ⩽ p(n−1)/n. Therefore, the accuracy error in estimating the summation
by an integral will be p(n−1)/n/p = p−1/n ≫ p−1/2, for n ⩾ 3.
Moreover, for φ(x) = sign sin(2πx), the estimate of the integral below is not known.∫ 1

0
φ(ut) · φ(vt) · φ(wt) dt. (4)

Arbitrary physical bit leakage in general prime modulus. Against arbitrary physical
bit leakage, extension to general prime modulus seems challenging. For example, when n = 2,
the technical challenge is to characterize (α1, α2) such that the distributions PHYSi(α1X) is
independent of PHYSj(α2X), where X is chosen uniformly at random. The bottleneck is to
establish an integral that estimates this expression for a general prime modulus.
More physical probes. Consider (n, k) = (2, 2), evaluation places (α1, α2), a Mersenne
prime modulus p, and physical bit leakage probing the first share twice & the second share
once. The technical problem is to show the independence of the following three distributions(

PHYSi(α1X), PHYSj(α1X), PHYSk(α2X)
)
,

where X ∈ Fp is chosen uniformly at random. The analysis reduces to estimating the integral
in Equation 4, where u = 2−iα1, v = 2−jα1, and w = 2−kα2, which is not known.
More general (n, k). For concreteness, consider (n, k) = (3, 2) and resilience to LSB leakage.
This resilience requires t-wise independence of the leakage bits, where k ⩽ t ⩽ n. The 2-wise
independence of leakage bits can be tested using the classifier in Figure 1. The 3-wise
independence test has identical hurdles as the “LSB classifier construction for n > 2” case
discussed above. There are evaluation places where the LSB leakage is 2-wise independent but
3-wise correlated for (n, k) = (3, 2). The evaluation places of Appendix H with (n, k) = (3, 2)
(instead of (n, k) = (3, 3)) have this property.

4 Security against Least Significant Bit Leakage

This section presents our results regarding the security of Shamir’s secret-sharing scheme
when n = k = 2 against the LSB leakage. We begin with a powerful technical result.

▶ Theorem 10 (Technical Result). Consider the ShamirSS(2, 2, (α1, α2)) secret-sharing scheme
over a prime field Fp, where p ⩾ 3.

max
s∈F

SD
(

⃗LSB(Share(0)) , ⃗LSB(Share(s))
)

=


4(|u|+ |v|)− (3/2)

p
, if |u| · |v|/g2 is even,

(
2− 1

2p

)
· g2

|u| · |v|
± 4(|u|+ |v|)− (3/2)

p
if |u| · |v|/g2 is odd,

where α1 · α−1
2 = u · v−1 and g = gcd(|u|, |v|).

Furthermore, for s ∈ F ∗
p satisfying (2−1 · s) · (u−1 − v−1) ∈ (2Z+1)·p±1

2|u||v| , if

SD
(

⃗LSB(Share(0)) , ⃗LSB(Share(s))
)
>

4(|u|+ |v|)− (3/2)
p
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then there is an efficient distinguisher to distinguish the secret 0 and s with advantage at
least (

2− 1
2p

)
· g2

|u| · |v|
− 4(|u|+ |v|)− (3/2)

p

using the LSB leakage on the secret shares.

Essentially, this theorem helps estimate the insecurity efficiently. Section 4.1 presents the
proof outline for this result and Appendix D presents the full proof. With this theorem, we
will state and prove the corollaries mentioned in Section 1.2.

4.1 Proof outline of Theorem 10
For any s ∈ F ∗, we start by obtaining a closed-form estimate of

SD
(

⃗LSB(Share(0)) , ⃗LSB(Share(s))
)
.

Then, we can solve for the optimal s ∈ F ∗ that maximizes the statistical distance. Below,
we present a high-level overview of the proof of Theorem 10.
Step 1. We connect the statistical distance between the leakages to the difference between
two sums of oscillatory functions. We define the function signp : Z→ ±1.

signp(X) :=
{

+1, if X ∈ {0, 1, . . . , (p− 1)/2} mod p

−1, if X ∈ {−(p− 1)/2, . . . ,−1} mod p.

For u, v,∆ ∈ F , we define the following measurement of similarity between two lines uT and
v(T −∆) on F .

Σ(∆)
u,v :=

∑
T ∈F

signp(uT ) · signp(v(T −∆)). (5)

▶ Lemma 11. Consider the ShamirSS(2, 2, (α1, α2)) secret-sharing scheme over a prime field
Fp. For any secret s ∈ Fp and (u, v) ∈ [α1 : α2],

SD
(

⃗LSB(Share(0)) , ⃗LSB(Share(s))
)

= 1
2p ·

∣∣∣Σ(0)
u,v − Σ(∆)

u,v

∣∣∣,
where ∆ :=

(
s · 2−1) · (u−1 − v−1), a linear automorphism over Fp.

Appendix D.1 proves Lemma 11.
Step 2. Next, our objective is to estimate the sum 1

p ·Σ
(∆)
u,v using the integral I(δ)

u,v defined as
an inner product of two square wave functions as follow.

I(δ)
u,v :=

∫ 1

0
sign sin(2π|u| · t) · sign sin(2π|v| · (t− δ)) dt.

▶ Lemma 12. For any u, v,∆ ∈ Fp, and δ = signp(∆)·|∆|
p ∈ Q,

1
p
· Σ(∆)

u,v = signp(u) · signp(v) · I(δ)
|u|,|v| +

signp(u∆)− signp(v∆)
p

± 4(|u|+ |v|)− 2
p

.

Appendix D.2 proves Lemma 12.
Step 3. Finally, we compute the value of the integral I(δ)

u,v.
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▶ Lemma 13. Let △ : R→ [−1,+1] be the triangle wave function defined as

△(t) := 4 ·
∣∣∣∣t+ 1

2 − ⌈t⌉
∣∣∣∣− 1.

Then, for any u, v ∈ {1, 2, . . . }, δ ∈ R, and g = gcd(u, v)

I(δ)
u,v =


0, if u · v/g2 is even

△(uv · δ) · g
2

uv
, if u · v/g2 is odd.

Appendix D.3 proves Lemma 13. Intuitively, if the highest power of 2 dividing u is
different from the highest power of 2 dividing v, then uv/g2 is even and I

(δ)
u,v = 0. If the

highest power of 2 dividing u is identical to the highest power of 2 dividing v, then uv/g2 is
odd and I

(δ)
u,v ̸= 0.

Step 4. Sequentially performing the substitutions above, we can estimate the statistical
distance using the integrals, which yields Theorem 10 after maximizing over every s ∈ F ∗.
Efficient distinguisher construction. We present an efficient maximum likelihood
distinguisher in Appendix D.7.

4.2 Insecurity Estimation: Statement and Proof of Corollary 14
Using Theorem 10, we prove that the estimated insecurity achieved by our classifier in
Figure 1 is close to the true insecurity.

▶ Corollary 14. Consider distinct evaluation places α⃗ = (α1, α2) and the corresponding
ShamirSS(2, 2, α⃗) secret-sharing scheme over the prime field Fp, where p ⩾ 3. Let (u, v) ∈
[α1 : α2] such that |u|, |v| ⩽ B, where B =

⌈
81/4 · √p

⌉
. Let △ : R→ [−1,+1] be the triangle

wave function △(t) := 4 ·
∣∣t+ 1

2 − ⌈t⌉
∣∣− 1. Let g = gcd(|u|, |v|). Define

ε
(est)
LSB (α⃗) :=


0, if |u| · |v|/g2 is even,

△(|u||v| · δ) · g2

|u| · |v|
, if |u| · |v|/g2 is odd.

Then,

ε
(est)
LSB (α⃗) = εLSB(α⃗) ±

(
85/4
√
p

+ 13/2
p

)
.

Proof. Use the LLL algorithm [41] to efficiently find (u, v) ∈ [α1 : α2] with properties
mentioned in the corollary (see Appendix C for details). Observe that the LHS of the
expression in Theorem 10 is identical to εLSB(α⃗) by our definition in Equation 1. From this
observation, the corollary is immediate. ◀

Next, we state the corollaries mentioned in Section 1.2 through this tight estimation.

4.3 Insecurity Identification: Statement of Corollary 15
▶ Corollary 15. Consider distinct evaluation places α⃗ = (α1, α2) and the corresponding
ShamirSS(2, 2, α⃗) secret-sharing scheme over the prime field Fp, where p ⩾ 3. Suppose the
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algorithm in Figure 1 determines α⃗ to be secure. Then,

εLSB(α⃗) ⩽ 1 + 85/4
√
p

+ 13/2
p

.

Among all possible distinct evaluation places α1, α2 ∈ F ∗
p , the algorithm of Figure 1 determines

at least

⩾ 1 −
1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2
p− 2 ⩾(∗) 1 −

(
ln p
4√p + 5/2

√
p

)
.

fraction of them to be secure. The (∗) inequality holds for any prime p ⩾ 11.

Appendix D.4 proves Corollary 15.

4.4 Advantage of Adversary: Statement of Corollary 16

▶ Corollary 16. Consider distinct evaluation places α⃗ = (α1, α2) and the corresponding
ShamirSS(2, 2, α⃗) secret-sharing scheme over the prime field Fp, where p ⩾ 3. If εLSB(α⃗) >
2·85/4

√
p + 13

p , then there is an efficient algorithm that generates s ∈ F ∗
p and can distinguish the

secret 0 from the secret s with an advantage

⩾ εLSB(α⃗) − 2 · 85/4
√
p
− 13

p

by leaking the LSB of the secret shares.

Consider an efficient adversary outputs the s indicated in Theorem 10. After observing the
leakage (ℓ1, ℓ2), the algorithm performs maximum likelihood decoding – computes whether
secret 0 or secret s is more likely to have generated the observed leakage. Then, it predicts
the most likely of the two events.

Appendix D.5 provides a full proof of the distinguishing advantage and security guarantee
of this adversary.

5 Security against all Physical Bit Leakage

We consider ShamirSS(n = 2, k = 2, (α1, α2)) over prime field Fp of order p ⩾ 3. Let λ be
the security parameter. This section considers Mersenne and Fermat primes, i.e., primes of
the form p = 2λ ± 1. Some initial Mersenne primes are 3, 7, 31, 127, 8191, and 131071, and
Fermat primes are 3, 5, 17, 257, and 65537.

Mersenne and Fermat’s primes satisfy the following property.

▶ Proposition 17. Let λ be the security parameter. Fix an arbitrary i ∈ {0, 1, 2, . . . , λ− 1}.
For all x ∈ Fp,

PHYSi(x) =
{

PHYS0(2−i · x) if p = −1 mod 2i+1

PHYS0(2−i · x+ (2−i − 1)) if p = 1 mod 2i+1

We prove this proposition in Appendix F.1.
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5.1 Leakage attack when 2kα1 = α2

Although α1 ̸= α2, it may be possible that 2kα1 = α2, for some k ∈ {0, 1, . . . , λ − 1}. We
prove that the secret-sharing scheme is insecure, taking care of this case in the algorithm of
Figure 2. Suppose we are leaking the i-th bit of the first secret share and the j-th bit of the
second secret share, such that j − i = k.

Suppose the secret is s ∈ Fp. Then, the secret share at evaluation place α is s+ uα, for
uniformly random u ∈ F . The joint distribution of leakage is

(PHYSi(s+ uα1),PHYSj(s+ uα2)).

Let v := u2−j and t := s2−j . Appendix F.2 uses Proposition 17 to show that when the order
of the field is a Mersenne or Fermat’s prime, the joint distribution of leakage is equivalent as
(for uniformly random v ∈ F )(

PHYS0(t2k + vα12k),PHYS0(t+ vα2)
)
≡
(
PHYS0(t2k + vα2),PHYS0(t+ vα2)

)
,

because 2kα1 = α2. When t = 0, both the leakage bits are identical. On the other hand, for
t = t∗ := (2k − 1)−1, the joint distribution of leakage is

(PHYS0(1 + t∗ + vα1),PHYS0(t∗ + vα2))

These two leakage bits are different with (1− 1/p) probability. Therefore, one can distinguish
the secret 0 and secret t∗2j with (1− 1/p) ∼ 1 advantage by leaking ⃗PHYSi,j ; whence the
following lemma (see Appendix F.2 for details).

▶ Lemma 18. Let F be the prime field of order p = 2λ ± 1. Consider distinct evaluation
places α1, α2 ∈ F ∗ such that 2k · α1 = α2 for some k ∈ {0, 1, . . . , λ− 1}. Then,

SD
(

⃗PHYSi,j(Share(0)) , ⃗PHYSi,j(Share(s))
)

⩾ 1− 1
p
,

where i, j ∈ {0, 1, . . . , λ − 1}, j − i = k mod λ. If p = 2λ − 1, s = (2k − 1)−1 · 2j and if
p = 2λ + 1, s = (2k − 1)−1 · 2j − 1.

5.2 Upper Bound on insecurity
▶ Corollary 19. Let F be the prime field of order p = 2λ ± 1. Consider distinct evaluation
places α⃗ = (α1, α2) and the corresponding ShamirSS(2, 2, α⃗) secret-sharing scheme over the
prime field F . Suppose the algorithm in Figure 2 determines α⃗ to be secure. Then,

εPHYS(α⃗) ⩽ 1 + 85/4
√
p

+ 13/2
p

.

Among all possible distinct evaluation places α1, α2 ∈ F ∗, the algorithm of Figure 1 determines
at least

⩾ 1 − ln p
ln 2 ·

1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2
p− 2 ⩾(∗) 1 − ln p

ln 2 ·
(

ln p
4√p + 5/2

√
p

)
.

fraction of them to be secure. The (∗) inequality holds for all p ⩾ 11.

The proof of this corollary can be found in Appendix F.3.
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5.3 Derandomization
We conclude this section by presenting a ‘derandomization’ result that is a direct consequence
of Theorem 10.

▶ Corollary 20. Let F be the prime field of Mersenne prime order p = 2λ − 1 where λ > 3.
Define t := ⌊λ/2⌋. Consider α⃗ = (α1, α2) ∈ [1 : 2t − 1] respectively. Then

εPHYS(α⃗) ⩽
4 ·
(
2⌊λ/2⌋ + 2⌈λ/2⌉)− 6

p
.

A similar result holds for Fermat primes as well. Note that if p = 2λ + 1 is a prime, then
λ/2 is an integer because λ must be a power of 2.

▶ Corollary 21. Let F be the prime field of Fermat prime order p = 2λ + 1. Define t := λ/2.
Consider α⃗ = (α1, α2) ∈ [1 : 2t − 1] respectively. Then

εPHYS(α⃗) ⩽ 8 · 2λ/2 − 3/2
p

.

See Appendix F.4 for their proofs.

6 Extension to arbitrary Number of Parties

We extend our derandomization results to Shamir’s secret-sharing scheme with the reconstruction
threshold k equal to the number of parties n ∈ {2, 3, . . . }. We begin by stating the following
general lifting theorem.

▶ Theorem 22. Consider ShamirSS(n, n, α⃗) over a prime field F . For every i ∈ {1, 2, . . . , n},
define

βi :=

αi

∏
j ̸=i

(αi − αj)

−1

.

Suppose there are two indices 1 ⩽ i∗ < j∗ ⩽ n such that ShamirSS(2, 2, (βi∗ , βj∗)) has ε-
insecurity against physical bit leakages. Then, ShamirSS(n, n, (α1, α2, . . . , αn)) has at most
2ε-insecurity against physical bit leakages.

The proof of this theorem is Fourier-analytic and uses properties of the Generalized
Reed-Solomon (GRS) codes. Corollary 23 is a consequence of this theorem.

▶ Corollary 23. Let Fp be the prime field of order p = 2λ ± 1 and n ∈ {2, 3, . . . }. Consider
distinct evaluation places α⃗ = (α1, α2, . . . , αn) and the corresponding ShamirSS(n, n, α⃗) secret-
sharing scheme over the prime field Fp. Suppose the algorithm in Figure 3 determines α⃗ to
be secure. Then,

εPHYS(α⃗) ⩽ 2 · 85/4
√
p

+ 13
p
.

Among all possible distinct evaluation places α⃗ ∈ (F ∗
p )n, the algorithm of Figure 3 determines

at least
1−

(
1

4 ln 2 ·
(ln p)2√p
p− n

+ 5
2 ln 2 ·

(ln p)√p
p− n

)
fraction of them to be secure.

We present the full proof of Theorem 22 and Corollary 23 in Appendix G.
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A Illustrating Technical Challenges: Resilience to LSB Leakage

This section illustrates the challenges of constructing such a classifier (Figure 1) against the
LSB leakage. Appendix A.3 to Appendix A.5 present three natural approaches that are
incorrect. How do we identify the evaluation places yielding LSB resilient sharing? Their
pattern is complex; our algorithm is illustrated in Figure 1; Section 2.1 presents an overview.
The exposition in Appendix A.5 introduces several technical components of our algorithm.

A.1 A New Vulnerability to LSB Leakage

Consider Shamir’s secret sharing scheme among n = 2 parties and threshold k = 2 over the
prime fields Fp, where p ⩾ 5. To share the secret s = 0, choose a polynomial P (X) := P1 ·X
for uniformly random P1 ∈ Fp. Suppose the first share is s1 := P (1), the evaluation of P (X)
at X = 1, and the second is s2 := P (3). The two shares are elements of the following set:

(s1, s2) ∈
{

(P1, 3 · P1) : P1 ∈ Fp

}
. (6)

The LSB attack – a specific bit probe – leaks each share’s parity. For example, a share
in the set {0, 2, 4, . . . , (p − 1)} has “even” parity, while a share in the complementary set
{1, 3, . . . , (p− 2)} has “odd” parity. We aim to investigate the leakage joint distribution:

Is the LSB leakage uniformly distributed over {even, odd} × {even, odd}?

Observation 1. Let us calculate the probability that the parity of s1 differs from that of s2.
There are two exhaustive cases.
A: Share s1 = 2 · x, where x ∈ Z ∩ [p/6, 2p/6]: The parity of s1 is even, and the parity of

s2 = 3 · s1 = 6 · x is odd (because of one “ mod p” wraparound).
B: Share s1 = 2 · x, where x ∈ Z ∩ [4p/6, 5p/6]: The parity of s1 is odd (because of one “

mod p” wraparound), and s2 = 6 · x is even (because of four “ mod p” wraparounds).
Therefore, the probability of the parity of s1 and s2 being different is (roughly) 1/3; the
leakage is not uniformly random.

Observation 2. Next, secret-share a uniformly random secret s ∈ Fp. The two shares are:

(s1, s2) = (s+ P1, s+ 3 · P1), (7)

where s, P1 ∈ Fp are uniformly and independently random. In this case, the leakage is
uniformly random, and the probability of the parity of s1 and s2 being different is (roughly)
1/2 (because the two shares are also uniformly and independently distributed over Fp).
By an averaging argument, there is a secret s∗ ∈ Fp such that the probability of the
parity-of-shares-being-different is ⩾ 1/2. Our algorithms efficiently generate the secret s∗.

Conclusion. These two observations demonstrate that the LSB leakage is not independent
of the secret; the secret 0 and s∗ are distinguishable with advantage ⩾ 1/2− 1/3 = 1/6. For
brevity, we say that the leakage is 1/6-dependent on the secret, and this scheme is vulnerable.

This vulnerability extends to all α1 · α−1
2 ∈

{
±3,±3−1} using properties of Generalized

Reed Solomon codes [30]. Before our work, the only known vulnerable evaluation places
satisfied α1 ·α−1

2 = −1 [43, 1, 45, 19]. Any (α1, α2) pair deemed insecure by our algorithm in
Figure 1 will result in a new attack.
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A.2 An Example of Leakage-Resilience to LSB Leakage
Now consider evaluation places (1, 2). In this case, the shares of 0 satisfy:

(s1, s2) ∈
{

(P1, 2 · P1) : P1 ∈ Fp

}
. (8)

Similar to Observation 1, the probability of the parity of s1 and s2 being different is (roughly)
1/2; the leakage is uniformly random.2 From this fact, using some additional analysis, one
can prove that the LSB leakage is statistically independent of the secret.3

▶ Remark 24. Looking ahead, the evaluation places (1, 2) is vulnerable to physical bit leakage
over Mersenne/Fermat prime fields (see Remark 6).

A.3 Classifier Construction: First Attempt
Consider distinct evaluation places α1, α2 ∈ Fp. The corresponding shares of 0 are:

(s1, s2) ∈
{

(α1 · P1, α2 · P1) : P1 ∈ Fp

}
. (9)

Using the presentation above, it suffices to determine the probability of the two shares having
different parity. This probability is computable in O(p) time by exhaustively considering
all P1 ∈ Fp. This brute-force algorithm is “efficient” only for small primes; however, any
Shamir’s scheme is 1/p-dependent on the secret. Hence, Shamir’s scheme is vulnerable to
LSB leakage when the prime modulus is small. For large primes, as is standard in this line
of research, the length of the binary representation of the elements in Fp, i.e., “λ := log2 p,”
denotes the problem size. Any efficient algorithm must have a poly(λ) runtime, but this
brute-force algorithm takes exponential time.

A.4 Classifier Construction: Second Attempt

Draw t elements
{
P

(1)
1 , . . . , P

(t)
1

}
from Fp uniformly and independently at random. Compute

the corresponding leakage for each sample and estimate the leakage distribution from these
samples. Using the tightness of the Chernoff bound, the accuracy of this estimation is only
poly(1/t), which is too coarse-grained for any tractable number of samples. So, this strategy
will have false positives.

A.5 Classifier Construction: Third Attempt
This section focuses on developing an efficient algorithm. Let (α1 = 1, α2) be the evaluation
places. Extrapolating from the examples in Appendix A.1 and Appendix A.2, a “reasonable
conjecture” would be the following characterization.

If α2 is odd: Declare “LSB leakage is 1/2α2-dependent on the secret.”
Else (If α2 is even): Declare “LSB leakage is independent of the secret.”

2 The shares have different parity when (s1, s2) = (2 · x, 4 · x) and x ∈ Z ∩ [p/4, 3p/4].
3 The LSB leakage being uniformly random for secret 0 does not outrightly imply that the LSB leakage is

independent of the secret. For example, it is possible that the probability of the shares having different
parity is > 1/2 for half the secrets, and for the remaining secrets, this probability is < 1/2, such that
their average is 1/2. However, our technical analysis rules out this possibility.
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Fascinatingly, this classifier also has false positives. For example, consider a prime
p = 6t+ 1, where t is a large integer. Consider the evaluation places (α1, α2) = (1, 2t+ 2);
the algorithm above misclassifies it as resilient to LSB leakage (because α2 is even). However,
these evaluation places are 1/30-dependent on the secret.

Using properties of Generalized Reed-Solomon codes [30], the shares of 0 for evaluation
places (α1, α2) and evaluation places (u, v) are identical when α1 ·α−1

2 = u · v−1; represented
by (u, v) ∈ [α1 : α2]. In our example, for instance, (3, 5) ∈ [1 : 2t+ 2] and, as in the previous
examples, the shares are (6x, 10x), for x ∈ Fp. The two shares have different parity when

x ∈ Z ∩
([

3p
30 ,

5p
30

]
∪
[

6p
30 ,

9p
30

]
∪
[

10p
30 ,

12p
30

]
∪
[

18p
30 ,

20p
30

]
∪
[

21p
30 ,

24p
30

]
∪
[

25p
30 ,

27p
30

])
.

The probability of this event is 1/2− 1/30; therefore, the LSB leakage is 1/30-dependent on
the secret.

B Prior Related Works

The literature on leakage resilience and related areas is vast. It is challenging to cover all of
them exhaustively; representative ones, most relevant to our work, are presented below.

B.1 Physical bit probing attacks
Probing wires and introducing random faults into them seem innocuous but lead to devastating
attacks – the more straightforward the attack, the greater a security threat it poses. For
example, Boneh et al. [8] showed the vulnerability of computing RSA signatures to random
fault injection into memory. Ishai, Sahai, and Wagner [34] introduced the bit probing model to
theoretically investigate real-world threats posed by an adversary that can probe a bounded
number of memory locations. Bit probes on a share can also be used to estimate its Hamming
weight, which leads to realistic threats like (1) algebraic side-channel attacks (beginning
with the work of Renauld et al. [57]) and (2) recent attacks like Hertzbleed [66]. Recently,
Faust et al. [19] provided a more comprehensive presentation. Maji et al. [43] introduced
the “parity-of-parities” attack on the additive secret-sharing scheme. This attack leaks the
LSB of each share, and the parity of the leaked bits is correlated with the secret’s parity;
this attack leads to (2/π)n ≈ 0.63n insecurity [1, 45, 19]. This simple attack matches the
upper bound on the insecurity of the additive secret-sharing scheme against arbitrary local
leakage proved in [4, 5]. Maji et al. [43] & Costes and Stam [16] independently observed that
Shamir’s secret-sharing scheme inherits this vulnerability if the modulus and the evaluation
places are carelessly chosen. Our work identifies more vulnerable evaluation places using the
same LSB attack.

B.2 Local leakage resilience
Benhamouda et al. [4] introduced leakage-resilient secret-sharing, which was implicit in the
work of Goyal and Kumar [26]. Several works have constructed new secret-sharing schemes
resilient to leakage attacks [6, 2, 61, 3, 39, 7, 20, 61, 21, 33, 13, 49, 11, 11]. There is a
significant interest in characterizing the leakage-resilience of practical secret-sharing schemes,
like the additive and Shamir’s secret-sharing scheme. [43, 47] proved that, for reconstruction
threshold k = 2 and an arbitrary number of parties n, choosing evaluation places at random
yields a leakage-resilient Shamir secret-sharing scheme with a high probability against physical
bit leakage. A sequence of works also determined the optimal leakage attack [43, 1, 45].
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Other Monte Carlo constructions have also been proposed in [48, 44]. Faust et al. [19] present
additional motivations for this research direction from practical motivations and a security
analysis against the Hamming weight leakage (specialized to Mersenne primes).

Another flavor of results characterizes the leakage-resilience of Shamir’s secret-sharing
scheme for a large number of parties. For example, when k ⩾ 0.69n, Shamir’s secret sharing
(with any evaluation places) is leakage-resilient to (arbitrary) one-bit local leakage. Here,
the insecurity is exponentially small in n [4, 5, 48, 46, 35]. Contrast this with our scenario,
where the insecurity is exponentially small in the security parameter, independent of n. [53]
proved that Shamir’s secret-sharing scheme is insecure to local leakage when n/k is large.

B.3 Reed-Solomon Code Repair
Guruswami and Wooters [27, 28] considered the exact repair problem for Reed-Solomon
codes – an antithetical objective to leakage resilience. They aim to repair the codeword
by obtaining partial information from each block. Subsequently, a large body of work
focused on repairing Reed-Solomon codes [17, 18, 23, 24, 54, 62, 67, 56, 68, 69, 15, 14].
Massey [50] connected linear secret-sharing schemes and linear codes. For example, Shamir’s
secret-sharing scheme is the Massey secret-sharing scheme corresponding to (punctured)
Reed-Solomon codes. Repairing strategies for Reed-Solomon codes translate into techniques
to reconstruct the secret in Shamir’s secret-sharing scheme. However, there are crucial
differences though. The literature on Reed-Solomon codes evaluates the secret polynomial
on all finite field elements; they have n = card(F ). For leakage resilience, typically, the
secret polynomial is evaluated at n ⩽ poly(log card(F )) evaluation places; [15, Section VI]
highlights this distinction. Furthermore, they need to reconstruct the entire secret; however,
the family of information that they obtain from each block is more general than simply bit
probes. Even in this literature, reconstruction using a small number of (arbitrary) bits per
share and prime fields has been challenging due to non-linearity [15, 14].

B.4 Square wave function families
Various families of square waves find wide applications in science and engineering. For
example, consider the ones proposed by Haar [29], Walsh [65], and Rademacher [55]. In
our work, we connect the leakage resilience of secret-sharing schemes with the properties of
another family of square waves (see, for example, [63, 32, 31]){

sign sin(2πk · x)
}

k∈Z
.

Previous works [63, 32] have studied the orthogonality of this family of waves. We investigate,
more generally, the “similarity” among these waves and their offsets – functions of the form
sign sin(2πk · (x− δ)), for δ ∈ R. In our context, zero similarity coincides with orthogonality;
non-zero similarity represents correlation.

B.5 Simultaneous Diophantine Approximation
Solving simultaneous Diophantine approximation problems is a well-studied problem. This
problem arises when choosing a “good basis” for a lattice. In our context, for an odd prime
p, given distinct α1, α2 ∈ {1, 2, . . . , p− 1}, our objective is to find q ∈ {1, 2, . . . , p− 1} such
that qα1 mod p and qα2 mod p are either in the range {1, . . . ,√p} or {p−√p, . . . , p− 1}.
The integers qα1 mod p and qα2 mod p, intuitively, have “small norm mod p.” We will
use the classical LLL algorithm [41] to efficiently achieve this objective (see Appendix C).
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The Dirichlet approximation theorem [58, 59] states that, for any α ∈ Rd and any positive
integer N , there is a denominator 1 ⩽ q ⩽ Nd such that

max
i∈{1,2,...,d}

{qαi} ⩽
1
N
. (10)

Computing this solution is computationally challenging [40]. However, we can efficiently solve
this problem by slightly weakening the upper bound on q. The seminal LLL algorithm [41],
in particular, for α ∈ Qd, finds 1 ⩽ q ⩽ 2d(d+1)/4 ·Nd satisfying Equation 10.

C Solving Simultaneous Diophantine Equations

Figure 4 presents our algorithm. In this section, the “LLL algorithm” refers to the algorithm
with the following guarantees.

▶ Theorem 25 (LLL [41, Proposition 1.39]). There exists a polynomial-time algorithm that,
given a positive integer d and rational numbers r1, r2, . . . , rd, ε satisfying 0 < ε < 1, finds
integers s1, s2, . . . , sd, and t for which

|si − t · ri| ⩽ ε,

for 1 ⩽ i ⩽ d and 1 ⩽ t ⩽ 2d(d+1)/4 · ε−d.

Input. α1, α2 ∈ F ∗, where F is the prime field of order p
Output. Elements u, v ∈ F ∗ such that (u, v) ∈ [α1 : α2] and

u, v ∈ {−B,−(B − 1), . . . , 0, 1, . . . , (B − 1), B} mod p,

where B :=
⌈
23/4 · √p

⌉
.

Algorithm.
1. Interpret α1, α2 ∈ {0, 1, . . . , p− 1} as positive integers
2. Define d = 2
3. Define r1 = α1/p ∈ Q and r2 = α2/p ∈ Q
4. Define ε = B/p ∈ Q
5. Use the LLL algorithm to find integers s1, s2, and t

6. Interpret t as an element of F . Define u = α1 · t ∈ F and v = α2 · t ∈ F

Figure 4 Our Algorithm to obtain (u, v) from (α1, α2) using the LLL-algorithm.

Let us proceed to analyze our algorithm of Figure 4. The parameter setting needs
to ensure that t ⩽ 2d(d+1)/4ε−d < p. Recall that ε = B/p. Substituting this value and
rearranging, one needs to ensure that 2d(d+1)/4 · pd−1 < Bd. Therefore we have chosen
B =

⌈
2(d+1)/4p1−1/d

⌉
. Consequently, one can interpret t as an F ∗ element.

By definition, (u, v) ∈ [α1 : α2] because u = t · α1 and v = t · α2. Next, note that

|α1 · t− s1 · p| ⩽ ε · p = B, and |α2 · t− s2 · p| ⩽ ε · p = B.

This argument completes the analysis that for every (α1, α2) how we obtain (u, v) ∈ [α1 :
α2] such that u and v are “small (positive/negative) numbers.”
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D Proof of Technical Lemmas

D.1 Proof of Lemma 11

Proof of Lemma 11. Consider the ShamirSS(2, 2, (α1, α2)) secret-sharing scheme over a
prime field Fp. Consider an arbitrary secret s ∈ Fp and evaluation places (u, v) ∈ [α1 : α2].

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
=

∑
ℓ⃗∈{0,1}2

∣∣∣Pr
[
⃗LSB(Share(0)) = ℓ⃗

]
− Pr

[
⃗LSB(Share(s)) = ℓ⃗

]∣∣∣
=

∑
ℓ⃗∈{0,1}2

∣∣∣∣E
X

[
1LSB−1(ℓ1)(uX) · 1LSB−1(ℓ2)(vX)

]
− E

X

[
1LSB−1(ℓ1)(uX + s) · 1LSB−1(ℓ2)(vX + s)

]∣∣∣∣ (11)

▷ Claim 26. For ℓ ∈ {0, 1} and X ∈ Fp, we have

1LSB−1(ℓ)(X) = 1
2

(
1 + (−1)ℓ · signp(X · 2−1)

)
.

Applying Claim 26 to Equation 11, we get

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
=

∑
ℓ⃗∈{0,1}2

∣∣∣∣∣EX
[(

1 + (−1)ℓ1 signp(uX · 2−1)
2

)
·

(
1 + (−1)ℓ2 signp(vX · 2−1)

2

)]

− E
X

[(
1 + (−1)ℓ1 signp((uX + s) · 2−1)

2

)
·

(
1 + (−1)ℓ2 signp((vX + s) · 2−1)

2

)]∣∣∣∣∣
= 1

4 ·
∑

ℓ⃗∈{0,1}2

∣∣∣∣E
X

[
signp(uX · 2−1) · signp(vX · 2−1)

]
− E

X

[
signp((uX + s) · 2−1) · signp((vX + s) · 2−1)

]∣∣∣∣
=
∣∣∣∣E
X

[
signp(uX · 2−1) · signp(vX · 2−1)

]
− E

X

[
signp((uX + s) · 2−1) · signp((vX + s) · 2−1)

]∣∣∣∣
= 1
p
·

∣∣∣∣∣∣
∑

X∈Fp

signp(uX · 2−1) · signp(vX · 2−1)

−
∑

X∈Fp

signp((uX + s) · 2−1) · signp((vX + s) · 2−1)

∣∣∣∣∣∣
= 1
p
·

∣∣∣∣∣∣
∑

Y ∈Fp

signp(uY ) · signp(vY )−
∑

Z∈Fp

signp(uZ) · signp(v(Z − s · 2−1 · (u−1 − v−1)))

∣∣∣∣∣∣
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The last step uses the renaming X ·2−1 7→ Y (an F automorphism) and (X+s·u−1)·2−1 7→ Z

(an F -automorphism). Therefore,

SD
(

LSB(Share(0)) , LSB(Share(s))
)

=

∣∣∣Σ(0)
u,v − Σ(∆)

u,v

∣∣∣
2p ,

where ∆ :=
(
s · 2−1) · (u−1 − v−1), a linear automorphism over Fp.

◀

D.2 Proof of Lemma 12
Recall that signp(X = 0) = +1 and sign(x = 0) = 0. Due to this mismatch, we defined an
intermediate function satisfying s̃ignp(X = 0) = 0.

s̃ignp(X) :=


+1, if X ∈ {1, . . . , (p− 1)/2} mod p

0, if X = 0 mod p

−1, if X ∈ {−(p− 1)/2, . . . ,−1} mod p.

(12)

Analogously, we define

Σ̃(∆)
k,ℓ :=

∑
T ∈F

s̃ignp(kT ) · s̃ignp(ℓ(T −∆)).

So, our next objective is to relate the quantities Σ(∆)
k,ℓ with Σ̃(∆)

k,ℓ .

▷ Claim 27. For any k, ℓ,∆ ∈ Fp,

Σ(∆)
k,ℓ = Σ̃(∆)

k,ℓ +

 ∑
T ∈{0,∆}

signp(kT ) · signp(ℓ(T −∆))

.
Proof of Claim 27. This claim follows directly from the definition of Σ(∆)

k,ℓ , signp(X), Σ̃(∆)
k,ℓ ,

and s̃ignp(X), for k, ℓ,∆ ∈ Fp. The primary observation is that signp(X) = s̃ignp(X), for all
X ∈ F ∗

p , and s̃ignp(X = 0) = 0.

Σ(∆)
k,ℓ =

∑
T ∈F

signp(kT ) · signp(ℓ(T −∆))

=
(∑

T ∈F

s̃ignp(kT ) · s̃ignp(ℓ(T −∆))
)

+

 ∑
T ∈{0,∆}

signp(kT ) · signp(ℓ(T −∆))


= Σ̃(∆)

k,ℓ +

 ∑
T ∈{0,∆}

signp(kT ) · signp(ℓ(T −∆))


◀

▷ Claim 28 (Transference Property). For all k,∆ ∈ Fp, X ∈ Z, X = X ′ mod p, x = X ′/p ∈
1
p · Z, and δ = ∆/p ∈ 1

p · Z,

s̃ignp(k · (X −∆)) = φ(k · (x− δ)).
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▷ Claim 29. For k,∆ ∈ Fp and x ∈ 1
p ·Z, define δ := ∆

p ∈
1
p ·Z and δ′ := signp(∆)·|∆|p

p ∈ 1
p ·Z.

Then,
φ(k · (x− δ)) = φ(k · (x− δ′)).

Proof of Claim 29. Consider the following exhaustive case analysis.

Case 1: ∆ ∈ {0, 1, . . . , (p− 1)/2}.
In this scenario, signp(∆) = 1, |∆|p = ∆ and δ = δ′. Then, φ(k · (x− δ)) = φ(k · (x− δ′)).

Case 2: ∆ ∈ {(p+ 1)/2, (p+ 3)/2, . . . , p− 1}.
In this scenario, signp(∆) = −1, |∆|p = p−∆ and δ′ = δ − 1. Then,

φ(k · (x− δ′)) = φ(k · (x− δ + 1))
= sign(sin(2πk · (x− δ + 1)))
= sign(sin(2πk · (x− δ) + 2πk))
= sign(sin(2πk · (x− δ)))
= φ(k · (x− δ))

whence the claim. ◀

▷ Claim 30. For k ∈ Fp and x, δ ∈ 1
p · Z, the following holds.

φ(k · (x− δ)) = signp(k) · φ(|k|p · (x− δ)).

Proof of Claim 30. Similar to the previous claim, we prove this via exhaustive case analysis.

Case 1: k ∈ {0, 1, . . . , (p− 1)/2}.
We can see |k|p = k, signp(k) = 1, and φ(k · (x− δ)) = signp(k) ·φ(|k|p · (x− δ)) holds by
simply plugging in the values.

Case 2: k ∈ {(p+ 1)/2, (p+ 3)/2, . . . , p− 1}.
Substituting |k|p = p− k and signp(k) = −1 into signp(k) · φ(|k|p · (x− δ)) gives us

signp(k) · φ(|k|p · (x− δ))

= sign(sin(2π|k|p · (x− δ))) (Because |k|p = p− k)

= signp(k) · sign(sin(2π(p− k) · (x− δ)))
= signp(k) · sign(sin(2π(px− pδ)− 2πk · (x− δ)))

(Because if x, δ ∈ 1
p · Z then px, pδ ∈ Z)

= signp(k) · sign(sin(−2πk · (x− δ)))
= − signp(k) · sign(sin(2πk · (x− δ))) (Because signp(k) = −1)
= sign(sin(2πk · (x− δ)))
= φ(k · (x− δ))

This proves the claim. ◀

Given the Transference Property (Claim 28), Claim 29 and Claim 30, we observe that for
k, ℓ,∆ ∈ Fp, T ∈ F, t = T/p ∈ Q and δ = signp(∆)·|∆|p

p ∈ Q,

Σ̃(∆)
k,ℓ =

∑
T ∈F

s̃ignp(kT ) · s̃ignp(ℓ(T −∆))

=
∑

t∈{ 0
p , 1

p ,..., p−1
p }

signp(k) · signp(ℓ) · φ(|k|pt) · φ(|ℓ|p(t− δ))
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▶ Definition 31 (Number of Oscillations). A Boolean function f : [0, 1] → {±1} oscillates
at x ∈ [0, 1) if f(x) ̸= lim

h→0+
f(x + h). The number of oscillations is the cardinality of the

following set. {
x : f(x) ̸= lim

h→0+
f(x+ h)

}
.

Since our functions are periodic with period 1, counting the number of oscillations in the
interval [0, 1) in our context suffices.

By straightforward counting, one concludes the following.

▷ Claim 32 (Counting Number of Oscillations). For any |k|p, |ℓ|p ∈ {1, . . . , (p− 1)/2},

1. φ(|ℓ|p(x− δ)) oscillates (2|ℓ|p − 1) times, if δ ∈ 1
2|ℓ|p
· Z

2. φ(|ℓ|p(x− δ)) oscillates 2|ℓ|p times, if δ ̸∈ 1
2|ℓ|p
· Z

3. φ(|k|px) · φ(|ℓ|p(x− δ)) oscillates 2(|k|p + |ℓ|p)− 2 times, if δ ∈ 1
2|k|p

· Z ∩ 1
2|ℓ|p
· Z

4. φ(|k|px) · φ(|ℓ|p(x− δ)) oscillates 2(|k|p + |ℓ|p)− 1 times, if δ ̸∈ 1
2|k|p

· Z ∩ 1
2|ℓ|p
· Z

We prove the following general result that connects the sum of a Boolean function to its
integral.

▷ Claim 33 (Sum and Integral Connection). Fix an integer n ∈ {1, 2, . . . }. Let f : [0, 1]→ {±1}
be a Boolean function that oscillates H times in the range [0, 1]. Then,

1
n
·

∑
t∈{ 0

n , 1
n ,..., n−1

n }
f(t) ∈

∫ 1

0
f(t) dt± 2H

n
.

Proof of Claim 33. Consider an interval [r, r + 1/n), for r ∈ {0/n, 1/n, . . . , (n− 1)/n}. If f
does not oscillate in this interval, then f is constant in the interval, and we conclude

1
n
· f(t) =

∫ r+1/n

r

f(t) dt.

If f oscillates at some point in this interval, then (due to f being Boolean) we conclude

1
n
· f(t) ∈ [−1/n, 1/n] ⊆

∫ r+1/n

r

f(t) dt± 2
n
.

Adding this over all r ∈ {0/n, 1/n, . . . , (n− 1)/n} proves the claim. ◀

Claim 27 is essentially a consequence of Claim 32 and Claim 33 when

f(t) = signp(k) · signp(ℓ) · φ(|k|pt) · φ(|ℓ|p(t− δ)).

We are now ready to prove Lemma 12.

Proof of Lemma 12. For any k, ℓ,∆ ∈ Fp and δ = signp(∆)·|∆|p

p ∈ Q.

1
p
· Σ̃(∆)

k,ℓ =


signp(k) · signp(ℓ) · I(δ)

|k|p,|ℓ|p
±

4(|k|p + |ℓ|p)− 4
p

if δ ∈ 1
2|k|p

· Z ∩ 1
2|ℓ|p

· Z

signp(k) · signp(ℓ) · I(δ)
|k|p,|ℓ|p

±
4(|k|p + |ℓ|p)− 2

p
if δ ̸∈ 1

2|k|p
· Z ∩ 1

2|ℓ|p
· Z
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Combining the two cases, we get

1
p
· Σ̃(∆)

k,ℓ = signp(k) · signp(ℓ) · I(δ)
|k|p,|ℓ|p

±
4(|k|p + |ℓ|p)− 2

p
.

Applying Claim 27, we conclude the following

1
p
· Σ(∆)

k,ℓ = signp(k) · signp(ℓ) · I(δ)
|k|,|ℓ| +

signp(k∆)− signp(ℓ∆)
p

± 4(|k|+ |ℓ|)− 2
p

.

which completes the proof of Lemma 12. ◀

D.3 Proof of Lemma 13
To begin with, we formalize the orthogonal properties of the sine and cosine functions.

▶ Proposition 34 (Orthogonality of Sine/Cosine Waves [38, Page 38]). For k, ℓ ∈ {1, 2, . . . }∫ 1

0
sin(2kπt) · sin(2ℓπt) dt =

{
0, if k ̸= ℓ

1/2, if k = ℓ.∫ 1

0
sin(2kπt) · cos(2ℓπt) dt = 0.

For the periodic square wave [63, 32, 31] φ : R→ {−1, 0,+1}.

φ(x) := sign sin(2πx),

[32] uses (basic) Fourier analysis and Proposition 34 to determine the Fourier expansion of
φ(x).

φ(x) =
∑

odd n>0

4
πn
· sin(2nπx). (13)

We prove the following claim for standardization.

▷ Claim 35. For k, ℓ ∈ Fp and δ ∈ R, the following identity holds

I
(δ)
k,ℓ = I

(δ)
k/g,ℓ/g

where g = gcd(k, ℓ).

Proof of Claim 35. Define ψ(δ)
k,ℓ(x) := φ(kx) · φ(ℓ · (x− δ)).

Observe that ψ(δ)
k,ℓ(x) = ψ

(δ)
k,ℓ(x+1/d), for any d that divides both k and ℓ. Let g = gcd(k, ℓ).

So, from our observation, we conclude that ψ(δ)
k,ℓ has period 1/g. Therefore, we conclude that

I
(δ)
k,ℓ = g ·

∫ 1/g

0
ψ

(δ)
k,ℓ(t) dt.

Next, note that ψ(δ)
k,ℓ(x) = ψ

(δ)
k/d,ℓ/d(d · x), for any d that divides both k and ℓ. So we have

I
(δ)
k,ℓ = g ·

∫ 1/g

0
ψ

(δ)
k/g,ℓ/g(gt) dt.

By substituting the variable r = gt, we get

I
(δ)
k,ℓ = g ·

∫ 1

0
ψ

(δ)
k/g,ℓ/g(r) · 1

g
· dr = I

(δ)
k/g,ℓ/g.

◀
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Previously only I
(0)
k,ℓ was studied [63, 32]. In particular, motivated by our application

scenario, we study I
(δ)
k,ℓ , for all δ ∈ R. To begin our analysis, we assume that k and ℓ are

relatively prime.

▷ Claim 36. For relatively prime k, ℓ ∈ Fp such that k · ℓ is even, I(δ)
k,ℓ = 0, for all δ ∈ R.

Proof of Claim 36. Suppose k is even and ℓ is odd. In this case, for any odd m,n > 0,

sin
(

2nπ · k
(

1
2 + t

))
· sin

(
2mπ · ℓ

(
1
2 + t− δ

))

= sin


2nπ · kt

+
nk︸︷︷︸

even

·π

 · sin


2mπ · ℓ(t− δ)
+

mℓ︸︷︷︸
odd

·π


= sin(2nπ · kt) · ( − sin(2mπ · ℓ(t− δ)) )

Hence,∫ 1

0
sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt

=
∫ 1/2

0
sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt+

∫ 1

1/2
sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt

=
∫ 1/2

0
sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt−

∫ 1/2

0
sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt

= 0. (14)

Therefore,

I
(δ)
k,ℓ =

∫ 1

0
φ(kt) · φ(ℓ(t− δ)) dt

= 16
π2

∑
odd n>0

∑
odd m>0

1
mn

∫ 1

0
sin(2nπ · kt) · sin(2mπ · ℓ(t− δ)) dt (By Equation 13)

= 0 (By Equation 14)

Lastly, if k is odd and ℓ is even, then

sin
(

2nπ · k
(

1
2 + t

))
· sin

(
2mπ · ℓ

(
1
2 + t− δ

))

= sin


2nπ · kt

+
nk︸︷︷︸
odd

·π

 · sin


2mπ · ℓ(t− δ)
+

mℓ︸︷︷︸
even

·π


= ( − sin(2nπ · kt) ) · sin(2mπ · ℓ(t− δ))

which is the same as the previous case. Therefore, Equation 14 again holds and the proof of
this case still goes through; the final result remains the same. ◀

▷ Claim 37. Let △ : R→ [−1,+1] be the triangle wave function defined as

△(t) := 4 ·
∣∣∣∣t+ 1

2 − ⌈t⌉
∣∣∣∣− 1.
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For relatively prime k, ℓ ∈ {1, 2, . . . } such that k · ℓ is odd,

I
(δ)
k,ℓ = △(kℓ · δ)

kℓ
,

for all δ ∈ R. This also shows that I(δ)
k,ℓ achieves its maximum at δ ∈ 1

kℓ ·Z, and the minimum
at δ ∈ 1

2kℓ + 1
kℓ · Z.

To prove this claim, we first need to generalize Proposition 34 a bit.

▷ Claim 38. ∫ 1

0
sin(2kπt) · sin(2ℓπ(t− δ)) dt =

{
0, if k ̸= ℓ
1
2 cos(2ℓπδ), if k = ℓ.

Proof of Claim 38.∫ 1

0
sin(2kπt) · sin(2ℓπ(t− δ)) dt =

∫ 1

0
sin(2kπt) · sin(2ℓπt) cos(2ℓπδ) dt

−
∫ 1

0
sin(2kπt) · cos(2ℓπt) sin(2ℓπδ) dt

= cos(2ℓπδ)
∫ 1

0
sin(2kπt) · sin(2ℓπt) dt,

because, for all k, ℓ ∈ {1, 2, . . . }, Proposition 34 implies∫ 1

0
sin(2kπt) · cos(2ℓπt) dt = 0.

The proof of our claim follows from Proposition 34 because
∫ 1

0 sin(2kπt) · sin(2ℓπt) dt = 1/2
if (and only if) k = ℓ; otherwise, it is 0. ◀

Now we can prove Claim 37.

Proof of Claim 37. We simplify the expression for I(δ)
k,ℓ .

I
(δ)
k,ℓ =

∫ 1

0
φ(kt) · φ(ℓ(t− δ)) dt

= 16
π2

∑
odd n>0

∑
odd m>0

1
mn

∫ 1

0
sin(2nπ · kt) sin(2mπ · ℓ(t− δ)) dt (By Equation 13)

In light of Claim 38 above, the integral in the RHS survives if and only if nk = mℓ. Since
gcd(k, ℓ) = 1, note that nk = mℓ if and only if

(n,m) ∈ J :=
{

(ℓ, k), (3ℓ, 3k), (5ℓ, 5k), . . .
}
.

With this observation and Proposition 34, we get

I
(δ)
k,ℓ = 16

π2

∑
(n,m)∈J

cos(2mℓπδ)
mn

∫ 1

0
sin(2nπ · kt) sin(2mπ · ℓt) dt

= 16
π2

∑
odd a>0

cos(2kℓaπδ)
kℓ · a2

∫ 1

0
sin(2kℓaπ · t) sin(2kℓaπ · t) dt
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= 16
π2 ·

1
kℓ

∑
odd a>0

1
a2 ·

cos(2aπ · kℓδ)
2 (By Proposition 34 and Claim 38)

= 1
kℓ
·

(
8
π2 ·

∑
odd a>0

1
a2 · cos(2aπ · kℓδ)

)

= 1
kℓ
· △(kℓ · δ) (△(t) := 4 ·

∣∣t+ 1
2 − ⌈t⌉

∣∣− 1)

The last equality follows from Fourier expansion of triangle wave function

△(t) = 8
π2 ·

∑
odd a>0

cos(2aπ · t)
a2 .

◀

We are finally ready to prove Lemma 13.

Proof of Lemma 13. Combining Claim 36 and Claim 37, we showed that for relatively prime
k, ℓ ∈ Fp,

I
(δ)
k,ℓ =

0 if k · ℓ is even
△(kℓ · δ)

kℓ
if k · ℓ is odd

Claim 35 generalizes the result to all k, ℓ ∈ Fp by considering g = gcd(k, ℓ). This proves our
lemma that

I
(δ)
k,ℓ =

0 if k · ℓ is even
g2

kℓ
· △(kℓ · δ) if k · ℓ is odd

◀

D.4 Proof of Corollary 15
Proof of the first part of Corollary 15. The algorithm in Figure 1 declares α⃗ to be secure
either in Step 4 or Step 5.

Suppose our algorithm in Figure 1 declared that Shamir’s secret-sharing scheme is secure
in Step 4. In this case, |u| · |v|/g2 is even, where g = gcd(|u|, |v|). Using Corollary 14, we get
that our estimation ε

(est)
LSB = 0. The relation between our estimation and insecurity yields

εLSB(α⃗) ⩽ 85/4
√
p

+ 13/2
p

.

Suppose our algorithm in Figure 1 declared that Shamir’s secret-sharing scheme is secure
in Step 5. In this case, |u| · |v|/g2 ⩾

√
p and it is odd. Using Corollary 14, we get that our

estimation ε
(est)
LSB ⩽ 1/√p. The relation between our estimate and insecurity yields

εLSB(α⃗) ⩽ 1
√
p

+ 85/4
√
p

+ 13/2
p

.

◀

Proof of the second part of Corollary 15. We prove that our algorithm outputs “may be
insecure” only for an exponentially small fraction of the equivalence classes [α1 : α2], for
distinct evaluation places α1, α2 ∈ F ∗

p .
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First, observe that there are (p − 2) equivalence classes [1 : 2], [1 : 3], . . . , [1 : (p − 1)]
(because α1 ̸= α2 and 0 ̸∈ {α1, α2}).

Next, let us account for the instances when Figure 1 determines evaluation places α⃗ may
be insecure. Suppose a = (u/g) and b = (v/g), where g = gcd(u, v) ∈ {1, 2, . . . }. We need to
upper bound the cardinality of the following set

S :=
{

(a, b) : odd a, odd b, and |a · b| ⩽ √p
}
.

In this set, for any particular a, the corresponding positive b lies in the set {1, 3, 5, . . . , 2na−1},
such that (2na − 1) is the largest odd number satisfying a · (2na − 1) ⩽ √p. So, the number
of potential odd positive b’s is na ⩽ (√p+ a)/2a. As a result, the total number of potential
positive and negative candidates is at most (√p + a)/a. Let (2s − 1) be the largest odd
number ⩽

√
p. Therefore, we have

card(S) ⩽ 2 ·
∑

a∈{1,3,...,2s−1}

√
p+ a

a
= 2√p

(
1 + 1

3 + 1
5 +· · ·+ 1

2s− 1

)
+ 2s

⩽ 2√p ·
(

1 +
∫ s

1

1
2t− 1 dt

)
+ (√p+ 1)

= √p · ln(2s− 1) + 3√p+ 1 ⩽
1
2
√
p · ln p+ 3√p+ 1.

Note that for every (a, b), we also counted (−a,−b) in this set; both belong to the
same equivalence class. So, every equivalence class is represented at least twice. Therefore,
the number of equivalence classes for which our algorithm outputs “may be insecure” is
⩽ card(S)/2. The fraction of equivalence classes that our algorithm declares “may be insecure”
is

⩽
card(S)/2
p− 2 ⩽

1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2
p− 2 .

Asymptotically, the upper bound is ≲ 1
4 ·

ln p√
p . Concretely, Appendix D.4.1 proves the upper

bound

⩽
ln p
4√p + 5/2

√
p

for all p ⩾ 11. ◀

D.4.1 Proof of inequality used in the proof of Corollary 15
Our objective is to prove the following inequality for primes p ⩾ 11.

1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2
p− 2 ⩽

ln p
4√p + 5/2

√
p
.

We simplify this inequality into a simpler equivalent inequality.
1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2
p− 2 ⩽

ln p
4√p + 5/2

√
p

⇐⇒������1
4 ·
√
p · ln p+

�
�
�3

2 ·
√
p+ 1

2 ⩽������1
4 ·
√
p · ln p+

�
�
��
1

5
2 ·
√
p− 1

2 ·
ln p
√
p
− 5
√
p
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⇐⇒ 1
2
√
p+ 1

2 ln p ⩽ √p ⩽ p− 5.

Thus, it suffices to prove the final inequality. Toward this objective, observe that

1. ln p ⩽ √p, for p ⩾ 2, and
2. √p ⩽ p− 5, for p ⩾ 11.

Then, for p ⩾ 11,
1
2
√
p+ 1

2 ln p ⩽ √p ⩽ p− 5.

Therefore,
1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2
p− 2 ⩽

ln p
4√p + 5/2

√
p

for all p ⩾ 11.

D.5 Proof of Corollary 16
Proof of Corollary 16. Our efficient adversary outputs the s indicated in Theorem 10. After
observing the leakage (ℓ1, ℓ2), this algorithm performs maximum likelihood decoding –
computes whether secret 0 or secret s is more likely to have generated the observed leakage.
Then, it predicts the most likely of the two events.

We emphasize that the secret s′ ∈ F ∗ that witnesses the maximum statistical distance
between the leakage distributions LSB(Share(0)) and LSB(Share(s′)) may be different from
the secret s defined above. Secret s ∈ F ∗ witnesses the maximum estimate of the statistical
distance between the distributions LSB(Share(0)) and LSB(Share(s)).

For brevity, define err := 85/4
√

p + 13/2
p . Given α⃗, we run the LLL algorithm [41] to obtain

(u, v) ∈ [α1 : α2] such that |u|p, |v|p ⩽ B, where B =
⌈
81/4 · √p

⌉
. Define g = gcd(|u|p, |v|p).

We are given that εLSB(α⃗) > 2 · err. We claim that ε(est)
LSB (α⃗) > err and |u|p · |v|p/g2 is

odd. Suppose not; then, there are two possibilities.

1. If |u|p·|v|p/g2 is even. In this case, ε(est)
LSB (α⃗) = 0 and, hence, εLSB(α⃗) ⩽ err, by Corollary 14;

a contradiction.
2. If ε(est)

LSB (α⃗) ⩽ err and |u|p · |v|p/g2 is odd. In this case, εLSB(α⃗) ⩽ 2 · err, by Corollary 14;
a contradiction.

So, the signs of ε(est)
LSB (α⃗) and

(
1
p Σ(0)

α1,α2 − 1
p · Σ

(∆)
α1,α2

)
are identical (by Claim 39). Using

this property, Appendix D.6 proves that the advantage of the maximum likelihood decoder is

⩾ ε
(est)
LSB (α⃗)− err ⩾ εLSB(α⃗)− 2 · err.

◀

D.6 Alternative Proof for Corollary 16
▷ Claim 39. For ShamirSS(2, 2, α⃗ = (α1, α2)) and secret s ∈ F , define err := 85/4

√
p + 13/2

p .
Consider |α1|p, |α2|p < ⌈81/4√p⌉ and |α1|p · |α2|p/g2 is odd with g = gcd(|α1|p, |α2|p). When
εLSB(α⃗) > 2 · err,

sign
(
ε

(est)
LSB (α⃗)

)
= sign

(
Σ(0)

α1,α2 − Σ(∆)
α1,α2

p

)
where ∆ := (s · 2−1) · (α−1

1 − α−1
2 ) ∈ F .
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Proof of Claim 39. By Lemma 12 and δ = signp(∆)|∆|p

p ,

Σ(0)
α1,α2 − Σ(∆)

α1,α2

p

= signp(α1) · signp(α2) ·
(
I

(0)
|α1|p,|α2|p

− I(δ)
|α1|p,|α2|p

)
± 2 ·

4(|α1|p + |α2|p)− (3/2)
p

which we can rewrite equivalently as

Σ(0)
α1,α2 − Σ(∆)

α1,α2

p
± 2 ·

4(|α1|p + |α2|p)− (3/2)
p

= signp(α1) · signp(α2) ·
(
I

(0)
|α1|p,|α2|p

− I(δ)
|α1|p,|α2|p

)
.

For |α1|p, |α2|p < ⌈81/4√p⌉,

2 ·
4(|α1|p + |α2|p)− (3/2)

p
⩽ 2 · err < εLSB(α⃗) =

∣∣∣Σ(0)
α1,α2 − Σ(∆)

α1,α2

∣∣∣
p

.

which implies that ±2 · 4(|α1|p+|α2|p)−(3/2)
p does not change the sign of Σ(0)

α1,α2 −Σ(∆)
α1,α2

p . Hence,

sign
(

Σ(0)
α1,α2 − Σ(∆)

α1,α2

p
± 2 ·

4(|α1|p + |α2|p)− (3/2)
p

)
= sign

(
Σ(0)

α1,α2 − Σ(∆)
α1,α2

p

)
and therefore,

sign
(

Σ(0)
α1,α2 − Σ(∆)

α1,α2

p

)
= sign

(
signp(α1) · signp(α2) ·

(
I

(0)
|α1|p,|α2|p

− I(δ)
|α1|p,|α2|p

))
= sign

(
signp(α1) · signp(α2) ·

(
sin2(|v|pπ · δ) ·

g2

|u|p · |v|p

))
(By Lemma 13)

= sign
(
signp(α1) · signp(α2)

)
(Since sin2(|v|pπ · δ) ·

g2

|u|p · |v|p
> 0)

= sign
(
ε

(est)
LSB (α⃗)

)
◀

Alternative Proof for Corollary 16. For any secret s ∈ F , let us first define the distinguishing
advantage of the maximum likelihood decoder as

εLSB(α⃗; s) := Σ(0)
α1,α2 − Σ(∆)

α1,α2

p

where ∆ := (s · 2−1) · (α−1
1 − α−1

2 ) ∈ F and the estimate ε(est)
LSB (α⃗; s) ∈ [0, 1] satisfying

ε
(est)
LSB (α⃗; s) = εLSB(α⃗; s) ± err

where err := 85/4
√

p + 13/2
p . Given Claim 39, we know that for any secret s ∈ F ,

εLSB(α⃗; s) ⩾ ε
(est)
LSB (α⃗; s)− err. (15)
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and

ε
(est)
LSB (α⃗; s) ⩾ εLSB(α⃗; s)− err. (16)

Consider secret s∗ ∈ F that achieves the maximum ε
(est)
LSB (α⃗; s). Define ε(est)

LSB (α⃗; s∗) as

ε
(est)
LSB (α⃗) := max

s∈F
ε

(est)
LSB (α⃗; s) = ε

(est)
LSB (α⃗; s∗).

Similarly, consider s̃∗ ∈ F that reaches maximum εLSB(α⃗; s), and define εLSB(α⃗; s∗) as

εLSB(α⃗) := max
s∈F

εLSB(α⃗; s) = εLSB(α⃗; s̃∗).

Then,

εLSB(α⃗; s∗) ⩾ ε
(est)
LSB (α⃗; s∗)− err = ε

(est)
LSB (α⃗)− err (By Equation 15)

⩾ ε
(est)
LSB (α⃗; s̃∗)− err (Because ε(est)

LSB (α⃗; s∗) = max
s∈F

ε
(est)
LSB (α⃗; s))

⩾ εLSB(α⃗; s̃∗)− 2 · err (By Equation 16)
= εLSB(α⃗)− 2 · err > 0

and therefore, the distinguishing advantage of the maximum likelihood decoder is

⩾ ε
(est)
LSB (α⃗)− err ⩾ εLSB(α⃗)− 2 · err.

◀

D.7 Efficient Distinguisher Construction
Consider the following security game (illustrated in the figure below). The attacker picks a
secret s ∈ F ∗

p and sends it to the challenger. The challenger picks a random bit b ∈ {0, 1}. If
b = 0, the challenger samples (ℓ1, ℓ2) from distribution D0 := ⃗LSB(Share(0)) and sends it to
the attacker. Otherwise, the challenger samples (ℓ1, ℓ2) from distribution D1 := ⃗LSB(Share(s))
and sends it to the attacker. The attacker aims to guess which distribution (ℓ1, ℓ2) is sampled
from. It uses the maximum likelihood decoder and then returns its guess b̃ to the challenger.
The attacker wins the security game if b = b̃.

Attacker Challenger

s∗ ∈ F ∗
p D0 = ⃗LSB(Share(0))

D1 = ⃗LSB(Share(s∗))
b←$ {0, 1}

b̃ = ML(ℓ1, ℓ2) (ℓ1, ℓ2) (ℓ1, ℓ2)←$ Db

b̃ Test b
?= b̃

The maximum likelihood distinguisher outputs

b̃ =
{

0 if Pr[(ℓ1, ℓ2)|s = 0] ⩾ Pr[(ℓ1, ℓ2)|s = s∗]
1 if Pr[(ℓ1, ℓ2)|s = 0] < Pr[(ℓ1, ℓ2)|s = s∗]
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In other words, the output depends on sign(Pr[(ℓ1, ℓ2)|s = 0]− Pr[(ℓ1, ℓ2)|s = s∗]).
For evaluation places (u, v), where |u| · |v|/g2 is odd and g = gcd(|u|, |v|), and ∆ =

(s∗ · 2−1) · (u−1 − v−1) ∈ F ∗, we get

Pr[(ℓ1, ℓ2)|s = 0]− Pr[(ℓ1, ℓ2)|s = s∗]

= (−1)ℓ1+ℓ2 · Σ(0)
u,v − Σ(∆)

u,v

4p (Appendix D.1)

=
(−1)ℓ1+ℓ2 · signp(u) · signp(v)

4 ·
(
I

(0)
|u|,|v| − I

(δ)
|u|,|v| ± 2 · 4(|u|+ |v|)− (3/2)

p

)
(Lemma 12 and δ =

signp(∆)|∆|p
p

)

=
(−1)ℓ1+ℓ2 · signp(u) · signp(v)

4 ·
(

(1−△(|u||v| · δ)) · g2

|u| · |v|
± 2 · 4(|u|+ |v|)− (3/2)

p

)
(Lemma 13)

To maximize the likelihood of distinguishing between two secrets, attacker picks secret
s∗ ∈ Fp with the corresponding ∆∗ :=

(
s∗ · 2−1) · (u−1 − v−1) ∈ Fp and δ∗ := ∆∗

p ∈
1
pZ

satisfying δ∗ ∈
(

1
2 ±

1
2p + Z

)
· 1

|u|·|v| .

▷ Claim 40. Consider ∆ ∈ Fp, define δ := ∆
p ∈

1
p ·Z. For k, ℓ ∈ Fp, the triangle wave function

△(kℓ · δ) achieves minimum when δ∗ ∈
(

1
2 ±

1
2p + Z

)
· 1

kℓ , equivalently, ∆∗ ∈ (2Z+1)·p±1
2kℓ and

the minimum achieved is △(kℓ · δ∗) = −1 + 2
p .

▷ Claim 41. For prime p > 2, consider k, ℓ ∈ Fp. Then,

min
∣∣∣∣1p · Z−

(
1
2 + Z

)
· 1
kℓ

∣∣∣∣ = 1
2pkℓ .

Proof. For k, ℓ ∈ Fp, gcd(p, 2kℓ) = 1. Then, there exists a, b ∈ Z such that a · p+ b · 2kℓ = 1.
b · 2kℓ ∈ 2Z implies that a ∈ 2Z + 1. Since p is odd and 2kℓ is even, then

min|2kℓ · Z− p · (2Z + 1)| ⩾ 1.

There exists −a ∈ 2Z + 1, b ∈ Z that |b · 2kℓ− a · p| = 1. Therefore,

min|2kℓ · Z− (2Z + 1) · p| = 1.

min
∣∣∣∣1p · Z−

(
1
2 + Z

)
· 1
kℓ

∣∣∣∣ = 1
2pkℓ ·min|2kℓ · Z− (2Z + 1) · p| = 1

2pkℓ
◀

Since SD
(
LSB(Share(0)) , LSB(Share(s))

)
> 4(|u|+|v|)−(3/2)

p by our assumption, then(
2− 1

2p

)
· g2

|u| · |v|
− 2 · 4(|u|+ |v|)− (3/2)

p
> 0.

Hence,

sign(Pr[(ℓ1, ℓ2)|s = 0]− Pr[(ℓ1, ℓ2)|s = s∗]) = (−1)ℓ1+ℓ2 · signp(u) · signp(v).

There exists an efficient maximum likelihood distinguisher computing (−1)ℓ1+ℓ2 ·signp(u) ·
signp(v). If (−1)ℓ1+ℓ2 · signp(u) · signp(v) > 0, then the maximum likelihood distinguisher
outputs b̃ = 0. Otherwise, it outputs b̃ = 1.
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E Equivalence classes for Evaluation Places

Consider Shamir’s secret-sharing scheme among n parties with reconstruction threshold k

over the prime field Fp of order p ⩾ 3. The secret-sharing scheme is the Massey secret-sharing
scheme [50] corresponding to the (punctured) Reed-Solomon code with evaluation places
(0, α1, α2, . . . , αn). That is, the dealer chooses a random Fp-polynomial P (Z) of degree < k

conditioned on P (Z = 0) being the secret s. Evaluating this polynomial at evaluation places
Z = α1, α2, . . . , αn generates the secret shares s1, s2, . . . , sn, respectively.

▶ Lemma 42 (Equivalence Classes of Evaluation Places). The (punctured) Reed-Solomon
code corresponding to evaluation places (0, α1, α2, . . . , αn) is identical to the (punctured)
Reed-Solomon code corresponding to evaluation places (0,Λ · α1,Λ · α2, . . . ,Λ · αn), for any
Λ ∈ F ∗

p .

This proposition is a consequence of the properties of Generalized Reed-Solomon codes [30, 42]
(see Appendix G.2.1 for definition and one of its primitive properties). In particular, since
the linear codes are identical, the corresponding Massey secret-sharing schemes have identical
resilience/vulnerability to attacks. That is, two secret-sharing schemes

ShamirSS(n, k, (α1, α2, . . . , αn)) and ShamirSS(n, k, (Λ · α1,Λ · α2, . . . ,Λ · αn))

have identical resilience/vulnerability to attacks, for any Λ ∈ F ∗
p . Therefore, for given distinct

evaluation places α1, α2, . . . , αn ∈ F ∗
p , we define the equivalence class

[α1 : α2 : · · · : αn] :=
{

(Λ · α1,Λ · α2, . . . ,Λ · αn) : Λ ∈ F ∗
p

}
.

Determining the security of the evaluation places (α1, . . . , αn) is equivalent to determining
the security of any element in the equivalence class [α1 : · · · : αn].
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F Security against Physical Bit Leakage: Corollaries and Proofs

We consider ShamirSS(n = 2, k = 2, (α1, α2)) over the prime field F of order p ⩾ 3. This
section considers p a Mersenne or Fermat prime, i.e., p = 2λ ± 1, where λ is the security
parameter.

F.1 Proof of Proposition 17
The following proposition will be used without proof.

▶ Proposition 43. Let F be a prime field of order p = 2λ − 1. Suppose x ∈ F and define
x′ = x · (2i) ∈ F , where i ∈ {−λ+ 1, . . . , 0, 1, . . . , λ− 1}. Then, the binary representation of
x′ is a cyclic left rotation of the binary representation of x by i bits.

We clarify that if i is negative, then “i bit cyclic left rotation” is the same as “|i| bit cyclic
right rotation.” This proposition is straightforward from the identity that 2λ = 1 mod p.

Proof of Proposition 17. Let λ be the security parameter.

Case 1: p = 2λ − 1 is a Mersenne prime.
Then for all i ∈ {0, 1, 2, . . . , λ− 1}, we have p = −1 mod 2i+1.
Note that, by Proposition 43, if PHYSi(x) = 0, then PHYS0(x · 2−i) = 0; similarly, if
PHYSi(x) = 1, then PHYS0(x · 2−i) = 1. Therefore, PHYSi(x) = PHYS0(x · 2−i).

Case 2: p = 2λ + 1 is a Fermat prime.
Then for all i ∈ {0, 1, 2, . . . , λ − 1}, p = 1 mod 2i+1. Let F be a prime field of order
p = 2λ + 1. Then, for x ∈ F , PHYSi(2x+ 1) = PHYSi−1(x). Therefore,

PHYSi(x) = PHYSi−1

(
x− 1

2

)
= PHYSi−2

(
x− 3

4

)
= · · · = PHYS0

(
x− 2i + 1

2i

)
.

Upon Simplification, we can conclude PHYSi(x) = PHYS0
(
2−ix+ 2−i − 1

)
.

◀

F.2 Reduction: Leakage attack when 2kα1 = α2

This section provides the detailed calculations behind the reduction from joint distribution
of physical-bit leakages to of LSBs, illustrated in Section 5.1, which leads to Lemma 18.

▶ Proposition 44. Let F be the prime field of order p = 2λ ± 1. Let α1, α2 ∈ F such that
α1 ≠ α2 yet 2kα1 = α2 for some k ∈ {0, 1, . . . , λ− 1}. Given s ∈ F , for uniformly random
u ∈ F , there exists t∗ ∈ F that makes the two following joint distributions equivalent.

(PHYSi(s+ uα1),PHYSj(s+ uα2)) ≡ (PHYS0(1 + t∗ + vα1),PHYS0(t∗ + vα2))

where v := v(u) is a uniform distribution i.i.d. to the distribution of u.

Proof of Proposition 44. We divide it into two cases.

Case 1: p = 2λ − 1.
Applying Proposition 17 and substituting t := s2−j , v := u2−j , and k := i− j gives us

(PHYSi(s+ uα1),PHYSj(s+ uα2))
≡
(
PHYS0((s+ uα1) · 2−i),PHYS0((s+ uα2) · 2−j)

)
(By Proposition 17)
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≡
(
PHYS0(s · 2−i + uα1 · 2−i),PHYS0(s · 2−j + uα2 · 2−j)

)
≡
(
PHYS0(t · 2k + α1 · v2k),PHYS0(t+ α2 · v)

)
(By aforesaid substitutions)

Let t∗ := (2k − 1)−1. Then t∗(2k − 1) = 1 which simplifies to t∗2k = t∗ + 1. Hence, by
substituting t∗ for t in above equation, we conclude

(PHYSi(s+ uα1),PHYSj(s+ uα2)) ≡ (PHYS0(1 + t∗ + vα1),PHYS0(t∗ + vα2))

Case 2: p = 2λ + 1.
We again apply Proposition 17, but for this case we substitute t := (s+ 1)2−j , v := u2−j

and k := i− j, and choose t∗ := (2k − 1)−1 − 1.

(PHYSi(s+ uα1),PHYSj(s+ uα2))
≡
(
PHYS0(s2−i + uα12−i + (2−i − 1)),PHYS0(s2−j + uα22−j + (2−j − 1))

)
≡
(
PHYS0(2−i(s+ 1) + uα12−i − 1),PHYS0(2−j(s+ 1) + uα22−j − 1)

)
≡
(
PHYS0(2kt+ α1 · v2k − 1),PHYS0(t+ α2v − 1)

)
(By aforesaid substitutions)

≡ (PHYS0(1 + t∗ + vα1),PHYS0(t∗ + vα2)) (Substitute t∗ for t)

As F is a prime field, the mapping u 7→ v := u2−j an automorphism over F , making the
distribution of v also uniform. ◀

Lemma 18 is then a direct consequence of Proposition 44, so Lemma 18 is also proved.

F.3 Proof of Corollary 19
We prove Corollary 19 separately for p is a Mersenne or Fermat prime.

F.3.1 Case A: p is a Mersenne Prime
Due to the properties of the F , when p = 2λ−1 is a Mersenne prime, we can reduce arbitrary
physical bit attacks on ShamirSS(2, 2, α⃗) to LSB leakage attacks on ShamirSS(2, 2, α⃗′), for an
appropriately defined α⃗′.

▶ Lemma 45. Let Fp be a prime field of order p = 2λ − 1. Consider evaluation places
α1, α2 ∈ F ∗

p such that 2k · α1 ̸= α2, for all k ∈ {0, 1, . . . , λ − 1}. Consider the leakage
attack ⃗PHYSi,j for any i, j ∈ {0, 1, . . . , λ− 1}. Define α′

1 = 2−i · α1 and α′
2 = 2−j · α2. For

any s ∈ Fp, let D denote the joint leakage distribution generated by the leakage function
⃗PHYSi,j when the secret shares are generated using the ShamirSS(2, 2, α⃗) secret-sharing

scheme. Likewise, D′ denotes the joint leakage distribution generated by the leakage function
⃗LSB when the secret shares are generated using the ShamirSS(2, 2, α⃗′) secret-sharing scheme

instead. Then, the distributions D and D′ are identical.

Since 2k · α1 ≠ α2, for all k ∈ {0, 1, . . . , λ − 1}, we conclude that α′
1 ̸= α′

2, for all i, j ∈
{0, 1, . . . , λ− 1}. Therefore, the secret-sharing scheme ShamirSS(2, 2, α⃗′) is valid. We prove
that the distributions D and D′ are identical, for all s ∈ Fp, using Proposition 17.

Proof of Lemma 45. Given s ∈ Fp,

2SD
(

⃗PHYSi,j(Share(0)) , ⃗PHYSi,j(Share(s))
)

=
∑

ℓ⃗∈{0,1}2

∣∣∣Pr
[

⃗PHYSi,j(Share(0)) = ℓ⃗
]
− Pr

[
⃗PHYSi,j(Share(s)) = ℓ⃗

]∣∣∣
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=
∑

ℓ⃗∈{0,1}2

∣∣∣∣Ex [1PHYS−1
i

(ℓ1)(α1x) · 1PHYS−1
j

(ℓ2)(α2x)
]

− E
x

[
1PHYS−1

i
(ℓ1)(α1x+ s) · 1PHYS−1

j
(ℓ2)(α2x+ s)

]∣∣∣∣
=

∑
ℓ⃗∈{0,1}2

∣∣∣∣Ex [1PHYS−1
i

(0)(α1x) · 1PHYS−1
j

(0)(α2x)
]

− E
x

[
1PHYS−1

i
(0)(α1x+ s) · 1PHYS−1

j
(0)(α2x+ s)

]∣∣∣∣
(Because 1PHYS−1

k
(1) = 1− 1PHYS−1

k
(0))

= 4 ·
∣∣∣∣Ex [1E(2−iα1x) · 1E(2−jα2x)

]
− E

x

[
1E(2−iα1x+ 2−is) · 1E(2−jα2x+ 2−js)

]∣∣∣∣
(By Proposition 17, E := PHYS−1

0 (0))

= 4 ·
∣∣∣∣Ex [1E(2−iα1x) · 1E(2−jα2x)

]
− E

y

[
1E(2−iα1 · y) · 1E(2−jα2 · y + s′)

]∣∣∣∣ (17)

where y :=
(
x+ α−1

1 · s
)

and s′ :=
(
(1− α−1

1 α2) · 2−js
)
. These substitutions are automorphisms

over F ∗.
Observe that Equation 17 equals εLSB(2−iα1, 2−jα2). Therefore, we conclude that the

insecurity of ShamirSS(2, 2, (α1, α2)) secret-sharing scheme against the ⃗PHYSi,j is identical
to the insecurity of the ShamirSS(2, 2, (2−iα1, 2−jα2)) secret-sharing scheme against the LSB
attack. ◀

Before we start proving Corollary 19 for Mersenne primes, we first prove the following
two corollaries on the estimated insecurity of ShamirSS(2, 2, α⃗).

▶ Corollary 46. Let Fp be the prime field of order p = 2λ − 1. Consider distinct evaluation
places α⃗ = (α1, α2) and the corresponding secret-sharing scheme ShamirSS(2, 2, α⃗). Define

ε
(est)
PHYS =



1, if 2t · α1 = α2

for some t ∈ {0, 1, . . . , λ− 1},

max
k∈{0,1,...,p−1}

ε
(est)
LSB

(
(2kα1, α2)

)
, if 2t · α1 ̸= α2

for all t ∈ {0, 1, . . . , λ− 1}.

Then,

ε
(est)
PHYS(α⃗) = εPHYS(α⃗) ±

(
85/4
√
p

+ 13/2
p

)
.

Proof of Corollary 46. If 2t · α1 = α2, for some t ∈ {0, 1, . . . , λ− 1}, we have ε(est)
PHYS(α⃗) = 1.

Lemma 18 presents a physical bit leakage attack with distinguishing advantage 1 − 1/p;
therefore, εPHYS(α⃗) ⩾ 1− 1/p. So, we conclude that

ε
(est)
PHYS(α⃗) = εPHYS(α⃗)± 1

p
.
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We are left with the case where 2tα1 ̸= α2 for all t ∈ {0, 1, . . . , λ− 1}. Lemma 45 shows
that the leakage distribution of PHYSi,j on ShamirSS(2, 2, α⃗) is identical to the leakage
distribution ⃗LSB on ShamirSS(2, 2, (2−iα1, 2−jαj) ).

Recall that the secret-sharing scheme ShamirSS(2, 2, (2−iα1, 2−jαj) ) is identical to the
secret-sharing scheme ShamirSS(2, 2, (2j−iα1, αj) ), by Lemma 42 in Appendix E. Hence,

εPHYS(α⃗) = max
t∈{0,1,... }

εLSB
(

(2tα1, α2)
)
.

We know that our estimation ε
(est)
LSB (·) is a tight estimation of εLSB(·) due to Corollary 14.

Therefore, we conclude that

ε
(est)
PHYS(α⃗) = εPHYS(α⃗) ±

(
85/4
√
p

+ 13/2
p

)
.

◀

▶ Corollary 47. Let Fp be the prime field with order p = 2λ− 1. Consider distinct evaluation
places α⃗ = (α1, α2) and the corresponding ShamirSS(2, 2, α⃗) over Fp. If εPHYS(α⃗) > 2·85/4

√
p +

13
p , then there is an efficient algorithm that generates (s, f) ∈ F ∗

p ×PHYS and can distinguish
the secret 0 from the secret s with an advantage

⩾ εPHYS(α⃗) − 2 · 85/4
√
p
− 13

p

by leaking f from the secret shares.

Proof of Corollary 47. If there is t ∈ {0, 1, . . . , λ− 1} such that 2tα1 = α2, then Lemma 18
presents an explicit leakage attack that suffices for this corollary.

If there 2tα1 ̸= α2 for all t ∈ {0, 1, . . . , λ− 1}, then Lemma 45 helps relate physical bit
attacks and LSB attacks. Suppose t is the witness such that ε(est)

PHYS(α⃗) = ε
(est)
LSB ( (2tα1, α2) ).

Then, consider the adversary against ShamirSS(2, 2, (2tα1, α2) ) that uses the LSB attack as
guaranteed by Corollary 16. Lemma 45 proves that the leakage distribution of the physical
bit attack ⃗PHYS0,t on ShamirSS(2, 2, α⃗) secret-sharing scheme has an identical distribution.
So, we run the adversary of Corollary 16 by leaking ⃗PHYS0,t from the secret shares of the
ShamirSS(2, 2, α⃗) secret-sharing scheme. ◀

Finally, we prove Corollary 19 for Mersenne primes.

Proof of Corollary 19, for Mersenne primes. Proof of the first part. If the algorithm
in Figure 2 determined (α1, α2) to be secure, then the algorithm in Figure 1 determined
(2tα1, α2) to be secure, for all t ∈ {0, 1, . . . , λ− 1}. For t ∈ {0, 1, . . . , λ− 1}, by Corollary 15,
we get the bound that

εLSB
(

(2tα1, α2)
)
⩽

1 + 85/4
√
p

+ 13/2
p

.

Just like the proof of Corollary 46, we have

εPHYS(α⃗) = max
t∈{0,1,...,λ−1}

εLSB
(

(2tα1, α2)
)
⩽

1 + 85/4
√
p

+ 13/2
p

.

Proof of the second part. If the algorithm in Figure 2 outputs “may be insecure” then
there is some k ∈ {0, 1, . . . , λ − 1} such that the algorithm in Figure 1 outputs “may be
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insecure” for (2kα1, α2). Corollary 15 proves that the algorithm in Figure 1 outputs “may
be insecure” for at most

1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2
p− 2

fraction of the equivalence classes. By, a union bound over k ∈ {0, 1, . . . , λ− 1}, Figure 2
outputs “may be insecure” for at most

log2 p ·
1
4 ·
√
p · ln p+ 3

2 ·
√
p+ 1

2
p− 2

fraction of the equivalence classes. ◀

F.3.2 Case B: p is a Fermat Prime
We start by extending Lemma 11 from ⃗LSB to ⃗PHYSi,j , over Fermat primes.

▶ Lemma 48. Fix prime p = 2λ + 1. Consider ShamirSS(2, 2, (α1, α2)) over prime field F
of order p. Define u := 2−i · α1 and v := 2−j · α2.

SD
(

⃗PHYSi,j(Share(0)) , ⃗PHYSi,j(Share(s))
)

= 1
2p ·

∣∣∣Σ(∆1)
u,v − Σ(∆2)

u,v

∣∣∣
where ∆1 = α−1

2 2−1 · (2j − 1)−α−1
1 2−1 · (2i− 1) and ∆2 = (s · 2−1) · (α−1

1 −α
−1
2 ) +α−1

2 2−1 ·
(2j − 1)− α−1

1 2−1 · (2i − 1), both are automorphisms over F .

Note that ∆2 = (s · 2−1) · (α−1
1 − α−1

2 ) + ∆1 and ∆1 is a constant independent of s.

Proof. Given s ∈ Fp, by following the same derivation as in the proof of Lemma 45, we get

SD
(

⃗PHYSi,j(Share(0)) , ⃗PHYSi,j(Share(s))
)

= 2 ·
∣∣∣∣Ex [1E(2−iα1x+ 2−i − 1) · 1E(2−jα2x+ 2−j − 1)

]
− E

x

[
1E(2−iα1x+ 2−is+ 2−i − 1) · 1E(2−jα2x+ 2−js+ 2−j − 1)

]∣∣∣∣
(By Proposition 17, E := PHYS−1

0 (0))

= 2 ·
∣∣∣∣Ey [1E(2−iα1y) · 1E(2−jα2y − s′)

]
− E

x

[
1E(2−iα1x+ 2−is+ 2−i − 1) · 1E(2−jα2x+ 2−js+ 2−j − 1)

]∣∣∣∣(
By substituting y := x+ α−1

1 − 2i · α−1
1

and s′ := 2i−jα−1
1 α2 · (2−i − 1)− 2−j + 1

)
= 2 ·

∣∣∣∣Ey [1E(2−iα1y) · 1E(2−jα2y + s′)
]

− E
z

[
1E(2−iα1z) · 1E(2−jα2z − s′′)

]∣∣∣∣(
By substituting z := x+ α−1

1 · s+ α−1
1 − 2i · α−1

1

and s′′ := 2−j · (α−1
1 α2 − 1)s+ 2i−jα−1

1 α2 · (2−i − 1)− 2−j + 1
)

All variable substitutions x 7→ y, x 7→ z, and s 7→ s′′ made above are automorphisms over
F ∗. Applying Claim 26 to above, we get

SD
(

⃗PHYSi,j(Share(0)) , ⃗PHYSi,j(Share(s))
)
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= 2 ·

∣∣∣∣∣Ey
[(

1 + signp(2−iα1y · 2−1)
2

)
·

(
1 + signp((2−jα2y − s′) · 2−1)

2

)]

− E
z

[(
1 + signp(2−iα1z · 2−1)

2

)
·

(
1 + signp((2−jα2z − s′′) · 2−1)

2

)]∣∣∣∣∣
= 1

2 ·
∣∣∣∣Ey [signp(2−iα1y · 2−1) · signp((2−jα2y − s′) · 2−1)

]
− E

z

[
signp(2−iα1z · 2−1) · signp((2−jα2z − s′′) · 2−1)

]∣∣∣∣
= 1

2p ·

∣∣∣∣∣∑
X∈F

signp(2−iα1X) · signp(2−jα2X − s′ · 2−1)

−
∑

X′∈F

signp(2−iα1X
′) · signp(2−jα2X

′ − s′′ · 2−1)

∣∣∣∣∣
= 1

2p ·

∣∣∣∣∣∑
X∈F

signp(2−iα1X) · signp(2−jα2 · (X − s′ · 2−1 · 2j · α−1
2 ))

−
∑

X∈F

signp(2−iα1X) · signp(2−jα2(X − s′′ · 2−1 · 2j · α−1
2 ))

∣∣∣∣∣
= 1

2p ·
∣∣∣Σ(∆1)

2−iα1,2−jα2
− Σ(∆2)

2−iα1,2−jα2

∣∣∣
where ∆1 and ∆2 are:

∆1 = s′ · 2−1 · 2j · α−1
2 = α−1

2 2−1 · (2j − 1)− α−1
1 2−1 · (2i − 1)

∆2 = s′′ · 2−1 · 2j · α−1
2

= (s · 2−1) · (α−1
1 − α−1

2 ) + α−1
2 2−1 · (2j − 1)− α−1

1 2−1 · (2i − 1)

◀

With this lemma, one can follow the same lines of calculations as in the proof for
Theorem 10 in Section 4.1, and achieve a tight bound for SD

(
⃗PHYSi,j(Share(0)) , ⃗PHYSi,j(Share(s))

)
as the one stated in Theorem 10. This then generates a variant of Corollary 14 and Corollary 15
for physical bit leakages for Fermat primes, proving Corollary 19 for Fermat primes.

F.4 Proof of Corollary 20 and Corollary 21
Proof of Corollary 20. For the proof, fix α1 = 1 and α2 = 2⌊λ/2⌋ − 1. We shall compute
εLSB(2i · α1, α2) for all i ∈ {0, 1, . . . , λ− 1} using Theorem 10. The bound in our corollary
will be the maximum of these individual upper bounds on εLSB(·).
Case A: i = 0. We are interested in computing the security of the evaluation places (2iα1, α2)
We use (u, v) = (1, 2t − 1), where t = ⌊λ/2⌋. Note that u, v are relatively prime and |u|p = 1
and |v|p = 2t − 1. Both these evaluation places are odd. Therefore, by Theorem 10, we have

εLSB(2i · α1, α2) ⩽ 1
2t − 1 + 4 + 4 · (2t − 1)− 2

p
.

Case B: 1 ⩽ i ⩽ ⌊λ/2⌋. We are interested in the security of (u, v) = (2i, 2t − 1), where
t = ⌊λ/2⌋. Note that u and v are relatively prime, u is even, and v is odd. Therefore, by
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Theorem 10, we have

εLSB(2i · α1, α2) ⩽ 4 · 2i + 4 · (2t − 1)− 2
p

.

Case C: ⌊λ/2⌋ + 1 ⩽ i ⩽ λ − 1. We are interested in the security of (u, v) = (2i, 2t − 1),
where t = ⌊λ/2⌋. Note that t+ 1 ⩽ i ⩽ λ−1. Define (u′, v′) := 2λ−t · (u, v) ∈ [u : v]. Observe
that

u′ = 2λ−t · u = 2i−t mod 2λ − 1
v′ = 2λ−t · v = −(2λ−t − 1) mod 2λ − 1.

Substitute u′ = 2j , where 1 ⩽ j ⩽ ⌊λ/2⌋, and v′ = −(2λ−t − 1). Therefore, by Theorem 10,
we have

εLSB(2i · α1, α2) ⩽ 4 · 2j + 4 · (2λ−t − 1)− 2
p

.

Appendix F.4.1 proves the following upper bound on the insecurity for all 0 ⩽ i < λ.

εLSB(2i · α1, α2) ⩽ 4 · (2⌊λ/2⌋ + 2⌈λ/2⌉)− 6
p

and this concludes the proof. ◀

Proof of Corollary 21. Just as we did for the proof of Corollary 20 above, we begin by fixing
α1 = 1 and α2 = 2λ/2 − 1, and consider εLSB(2i · α1, α2) for all i ∈ {0, 1, . . . , λ}. Note that
when p = 2λ + 1 is a Fermat prime, λ mod 2 = 0, i.e. λ/2 ∈ Z. As defined in the algorithm
in Figure 4, set B :=

⌈
23/4√p

⌉
>
⌈√

p
⌉

= 2λ/2 + 1.
Case A: i = 0. Since (2iα1, α2) = (α1, α2) = (1, 2λ/2−1), we may choose (u, v) = (1, 2λ/2−1)
because both |u|p = 1 and |v|p = 2λ/2 − 1 are less than B. Hence, the LSB advantage is, by
Theorem 10,

εLSB(2i · α1, α2) ⩽ g2

|u|p|v|p
+

4(|u|p + |v|p)− 3/2
p

= 1
2λ/2 − 1

+ 4 · 2λ/2 − 3/2
p

= 4 · 2λ/2

4 · (2λ − 2λ/2)
+ 4 · 2λ/2 − 3/2

p

⩽
4 · 2λ/2

p
+ 4 · 2λ/2 − 3/2

p
(p = 2λ + 1 ⩽ 4(2λ − 2λ/2) for λ ⩾ 2)

= 8 · 2λ/2 − 3/2
p

Case B: i ∈ {1, 2, . . . , λ/2}. We have (2iα1, α2) = (2i, 2λ/2 − 1). We can still choose
u = 2iα1 = 2i and v = α2 = 2λ/2 − 1 as both |u|p and |v|p would be still less than B, except
|u|p would be even this time. Then, again by Theorem 10,

εLSB(2i · α1, α2) ⩽
4(|u|p + |v|p)− 3/2

p
= 4 · 2i + 4 · 2λ/2 − 11/2

p

⩽
4 · 2λ/2 + 4 · 2λ/2 − 11/2

p

= 8 · 2λ/2 − 11/2
p
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Case C: i ∈ {λ/2 + 1, λ/2 + 2, . . . , λ}. For this case, 2i >
√
p and hence we need to choose

u and v differently. For simplicity, denote i = λ/2 + j for j ∈ {1, 2, . . . , λ/2}. Let u = 2λ/22i

and v = 2λ/2(2λ/2 − 1). Clearly (u, v) ∈ [α1 : α2] and they can be simplified as follows

u = 2λ/22i = 2λ2j = −2j mod p

v = 2λ/2(2λ/2 − 1) = 2λ − 2λ/2 = −(2λ/2 + 1) mod p

Then |u|p = 2j <
√
p < B and |v|p = 2λ/2 + 1 =

⌈√
p
⌉
< B. Hence, by Theorem 10,

εLSB(2i · α1, α2) ⩽
4(|u|p + |v|p)− 3/2

p
= 4 · 2j + 4 · 2λ/2 + 4− 3/2

p

⩽
8 · 2λ/2 − 5/2

p
.

This completes the proof. ◀

F.4.1 Proof of inequality used in the proof of Corollary 20

Observe that λ− t = λ− ⌊λ/2⌋ = ⌈λ/2⌉ ⩾ ⌊λ/2⌋ = t. Therefore, for 1 ⩽ i ⩽ λ− 1, we have

εLSB(2i · α1, α2) ⩽ 4 · 2t + 4 · (2λ−t − 1)− 2
p

.

All that remains is to prove that this upper bound also holds for εLSB(20 · α1, α2).
For λ = 2, we have t = 1. In this case, one can verify that the upper bound holds.

ε(20 · α1, α2) ⩽ 4 · 2t + 4 · (2λ−t − 1)− 2
p

.

For λ ⩾ 3, note that if p = 2λ − 1 is a Mersenne prime, then λ must be odd. Therefore,
we have λ− t = t+ 1 and p = 22t+1 − 1. Therefore, we need to prove that

ε(20 · α1, α2) = 1
2t − 1 + 4 + 4 · (2t − 1)− 2

p
⩽

4 · 2t + 4 · (2t+1 − 1)− 2
p

.

This bound is equivalent to proving

1
2t − 1 ⩽

4 · (2t+1 − 1)
22t+1 − 1

⇐⇒ 1
T − 1 ⩽

4 · (2T − 1)
2T 2 − 1 (Substitute T = 2t)

⇐⇒ 0 ⩽ 6T 2 − 12T + 5
⇐⇒ 1/6 ⩽ (T − 1)2,

which is true for all t ⩾ 1. Therefore, the overall maximum is

4 · 2⌊λ/2⌋ + 4 · (2⌈λ/2⌉ − 1)− 2
p

= 4 · (2⌊λ/2⌋ + 2⌈λ/2⌉)− 6
p

.

◀
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G Extension to arbitrary Number of Parties: Proofs

G.1 Proof of Corollary 23
Proof of Corollary 23. Choose arbitrary distinct evaluation places α1, α2, α4, . . . , αn ∈ F ∗

p .
Choose α3 uniformly at random from the set Fp \ {α1, α2, α4, . . . , αn}.

Define βi :=
(
αi

∏
j ̸=i(αi − αj)

)−1
as in Theorem 22, for i ∈ {1, . . . , n}. Observe that

choosing α⃗ at random does not necessarily imply that β⃗ is uniformly and independently
random over Fp. For this paper, we will prove a result that is easy to prove and sufficient for
our context.

Define

γ1 := α1
∏
j ̸=1

(α1 − αj), and γ2 := α2
∏
j ̸=2

(α2 − αj).

Then, we have

[γ1 : γ2] =

α1
∏
j ̸=1

(α1 − αj) : α2
∏
j ̸=2

(α2 − αj)

 (By definition)

=

1 : − α2

α1
·
∏
j⩾3

(
α2 − αj

α1 − αj

) (Because α1 ̸= 0 and α1 ̸∈ {α3, α4, . . . , αn})

=
[
1: ∆ ·

(
α2 − α3

α1 − α3

)]
, where ∆ := − α2

α1
·
∏
j⩾4

(
α2 − αj

α1 − αj

)

=

1: ∆ ·
(

1 + α2 − α1

α1 − α3

)
︸ ︷︷ ︸

=:Γ


We make the following observations.

1. ∆ ̸= 0, because α2 ̸= 0 and α2 ̸∈ {α4, . . . , αn}.
2.
∣∣∣{∆ · (1 + α2−α1

α1−α3

)
: α3 ∈ F ∗

p \ {α1, α2, α4, . . . , αn}}
∣∣∣ = (p − 1) − (n − 1) = p − n, since

the mapping α3 7→ Γ is a bijection.

Note that [β1 : β2] is identical to [γ−1
1 : γ−1

2 ] =
[
1 : Γ−1]. By Corollary 19, there are at most

p ·
(

1
4 ln 2 ·

(ln p)2
√
p

+ 5
2 ln 2 ·

ln p
√
p

)
= 1

4 ln 2 · (ln p)
2√p+ 5

2 ln 2 · (ln p)
√
p

values of α3 ∈ F ∗
p \ {α1} such that the algorithm in Figure 3 returns “may be insecure” for

ShamirSS(2, 2, (β1, β2)). Thus, there are at most
1

4 ln 2 · (ln p)
2√p+ 5

2 ln 2 · (ln p)
√
p

values of α3 ∈ F ∗
p \ {α1, α2, α4, . . . , αn} that are classified as “may be insecure”. This implies

that, when α3 ← F ∗
p \ {α1, α2, α4, . . . , αn}, the probability the algorithm reports “may be

insecure” is at most (
1

4 ln 2 · (ln p)
2√p+ 5

2 ln 2 · (ln p)
√
p

)
/(p− n).

This completes the proof. ◀
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G.2 Proof of Theorem 22
Before we dive into the proof of Theorem 22, we shall recall some definitions and basic results
regarding generalized Reed-Solomon (GRS) code and Fourier analysis of Boolean functions
that are necessary to understand the proof of Theorem 22.

G.2.1 Generalized Reed-Solomon Code
A generalized Reed-Solomon code over a prime field F with message length k and block length
n consists of an encoding function Enc : F k → Fn and decoding function Dec : Fn → F k. It
is specified by distinct evaluation places α⃗ = (α1, . . . , αn) and a scaling vector u⃗ such that
for all 1 ⩽ i ⩽ n, ui ∈ F ∗. Given α⃗ and u⃗, the encoding function is

Enc(m1, . . . ,mk) := (u1 · f(α1), . . . , un · f(αn)),

where f(X) := m1 +m2X + · · ·+mkX
k−1. We represent this code as [n, k, α⃗, u⃗]F -GRS.

The following standard properties of generalized Reed-Solomon codes shall be helpful for
our extension to an arbitrary number of parties [30, 42].

▶ Theorem 49 (Properties of GRS). The dual code of [n, k, α⃗, u⃗]F -GRS is identical to the
[n, n− k, α⃗, v⃗]F -GRS, where for all 1 ⩽ i ⩽ n,

v−1
i := ui

n∏
j=1
j ̸=i

(αi − αj).

In particular, when k = n − 1, the dual code is the set {β · (v1, v2, . . . , vn) : β ∈ F}, a
dimension one vector space over F .

We will apply this theorem to the dual of the code containing all possible secret shares of
the secret 0 in [n, n− 1, α⃗]-Shamir secret-sharing.

G.2.2 Fourier Analysis Basics
We use Fourier analysis on prime field F of order p. Define ω := exp(2πi/p). For any
functions f, g : F → C, we define the inner product as

⟨f, g⟩ := 1
p

∑
x∈F

f(x) · g(x),

where z is the complex conjugate of z ∈ C. For z ∈ C, |z| :=
√
zz. For any α ∈ F , define the

function f̂ : F → C as follows.

f̂(α) := 1
p

∑
x∈F

f(x) · ω−αx.

The Fourier transform maps the function f to the function f̂ .

▶ Lemma 50 (Fourier Inversion Formula). f(x) =
∑

α∈F f̂(α) · ωαx.

The following propositions will be useful, which follow directly from the definition.

▶ Proposition 51. Let S, T ⊆ F be a partition of F . For all α ∈ F ,

1̂S(α) = −1̂T (α).
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▶ Proposition 52 (Properties of Fourier Coefficients). For all S ⊆ F and x, α ∈ F , it holds
that

1̂x+S(α) = 1̂S(α) · ω−α·x,

1̂S(x · α) = 1̂S·x(α).

G.2.3 Some Preparatory Results
The following result rewrites the statistical distance between two leakage distributions using
the Fourier coefficients of appropriate indicator functions.

▶ Proposition 53. Consider ShamirSS(n, n) over a prime field F . Let C⊥
0 be the dual code

of Share(0). For any one-bit leakage function, τ⃗ : Fn → {0, 1}n, the following identity holds
for any secret s ∈ F .

2SD(τ⃗(Share(0)) , τ⃗(Share(s)))

= 2n

∣∣∣∣∣∣
∑

γ⃗∈C⊥
0 \0⃗

(
n∏

i=1
1̂τ−1

i
(0)(γi)

)
·
(

1− ωs·(γ1+···+γn)
)∣∣∣∣∣∣.

Proof of Proposition 53. The following identity is known in the literature (see [43] for
proof).

2SD(τ⃗(Share(0)) , τ⃗(Share(s)))

=
∑

ℓ⃗∈{0,1}n

∣∣∣∣∣∣
∑

γ⃗∈C⊥
0

(
n∏

i=1
1̂τ−1

i
(ℓi)(γi)

)
·
(

1− ωs·(γ1+···+γn)
)∣∣∣∣∣∣

By Proposition 51, 1̂τ−1
i

(ℓi)(γi) = ̂1τ−1
i

(1−ℓi)(γi) since τ−1
i (ℓi) and τ−1

i (1− ℓi) are a partition
of F . Using this property, one can verify for every ℓ⃗, ℓ⃗′ ∈ {0, 1}n, it holds that∣∣∣∣∣∣

∑
γ⃗∈C⊥

0

(
n∏

i=1
1̂τ−1

i
(ℓi)(γi)

)
·
(

1− ωs·(γ1+···+γn)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

γ⃗∈C⊥
0

(
n∏

i=1
1̂τ−1

i
(ℓ′

i
)(γi)

)
·
(

1− ωs·(γ1+···+γn)
)∣∣∣∣∣∣.

Therefore, we have

2SD(τ⃗(Share(0)) , τ⃗(Share(s)))

= 2n

∣∣∣∣∣∣
∑

γ⃗∈C⊥
0 \0⃗

(
n∏

i=1
1̂τ−1

i
(0)(γi)

)
·
(

1− ωs·(γ1+···+γn)
)∣∣∣∣∣∣,

as desired. ◀

▶ Proposition 54. Let A1, A2, . . . , An ⊆ F and β1, β2, . . . , βn ∈ F ∗. Then, for any s ∈ F ,
the following identity holds.

∑
t∈F

n∏
i=1

(
1̂Ai·βi

(t) · ωs·t·βi

)
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= 1
pn−1

∑
xn∈An·βn

...
x3∈A3·β3

card(A2)− card
((

A2 · β2 +
n∑

i=3
xi − s ·

n∑
i=1

βi

)⋂
A1 · β1

)

Proof of Proposition 54. We shall extensively use the linear property of Fourier coefficients.∑
t∈F

n∏
i=1

(
1̂Ai·βi(t) · ωs·t·βi

)
=
∑
t∈F

n∏
i

(
1
p

∑
xi∈F

1Ai·βi(xi) · ω−t·xi · ωs·t·βi

)
(Fourier expansion)

= 1
pn

∑
t∈F

∑
x⃗∈F n

(
n∏

i=1
1Ai·βi(xi) · ω−t·xi · ωs·t·βi

)
(Linearity)

= 1
pn

∑
x⃗∈F n

(
n∏

i=1
1Ai·βi(xi)

)∑
t∈F

ω−t·(x1+···+xn−s·(β1+···+βn)) (Linearity)

= 1
pn−1

∑
x⃗∈F n :

x1+···+xn=s·(β1+···+βn)

(
n∏

i=1
1Ai·βi(xi)

)
(Sum of roots of unity)

Now, replacing x1 = s · (β1 +· · ·+ βn)− (x2 +· · ·+ xn) yields

1
pn−1

∑
x2,...,xn∈F

1A1·β1(s · (β1 +· · ·+ βn)− (x2 +· · ·+ xn)) ·
n∏

i=2
1Ai·βi

(xi)

= 1
pn−1

∑
xn∈An·βn

...
x3∈A3·β3

∑
x2∈F

1A2·β2(x2) · 1A1·β1(s · (β1 +· · ·+ βn)− (x2 +· · ·+ xn))

Let us take a detour and simplify the inner summand using linear properties of sets and
indicator functions as follows.∑

x2∈F

1A2·β2(x2) · 1A1·β1(s · (β1 +· · ·+ βn)− (x2 +· · ·+ xn))

=
∑

x2∈F

1A2·β2(x2) · 1A1·β1−s·(β1+···+βn)+(x3+···+xn)(−x2)

=
∑

x2∈F

1A2·β2(x2) · 1−A1·β1+s·(β1+···+βn)−(x3+...+xn)(x2)

= card(A2 · β2 ∩ (−A1 · β1 − (x3 + . . .+ xn) + s · (β1 +· · ·+ βn)))
= card(A2 · β2 + (x3 +· · ·+ xn)− s · (β1 +· · ·+ βn) ∩ (−A1 · β1))
= card(A2 · β2)− card(A2 · β2 + (x3 +· · ·+ xn)− s · (β1 +· · ·+ βn) ∩A1 · β1)
= card(A2)− card(A2 · β2 + (x3 +· · ·+ xn)− s · (β1 +· · ·+ βn) ∩A1 · β1),

which completes the proof. ◀

G.2.4 Putting things together and proving Theorem 22
We can now prove Theorem 22.
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Proof of Theorem 22. We begin with some notations. Let τ⃗ : Fn → {0, 1}n be any one-bit
physical leakage. Let Ai = τ−1

i (0) for 1 ⩽ i ⩽ n. By Imported Theorem 49, the dual code
C⊥

0 is the set {t · (β1, β2, . . . , βn) : t ∈ F}, where

βi =

αi

∏
j ̸=i

(αi − αj)

−1

, for every i ∈ {1, 2, . . . , n}.

Consider the following manipulation.

2SD(τ⃗(Share(0)) , τ⃗(Share(s)))

= 2n ·

∣∣∣∣∣∣
∑

γ⃗∈C⊥
0 \0⃗

n∏
i=1

1̂τ−1
i

(0)(γi) ·
(

1− ωs·(γ1+···+γn)
)∣∣∣∣∣∣ (By Proposition 53)

= 2n ·

∣∣∣∣∣∑
t∈F ∗

n∏
i=1

1̂Ai
(t · βi) ·

(
1− ωs·t·(β1+···+βn)

)∣∣∣∣∣
= 2n ·

∣∣∣∣∣∑
t∈F ∗

n∏
i=1

1̂Ai·βi
(t)−

∑
t∈F ∗

n∏
i=1

1̂Ai·βi
(t) · ωs·t·βi

∣∣∣∣∣
For each s ∈ F and tuple (x3, x4, . . . , xn) satisfying xi ∈ Ai · βi for 3 ⩽ i ⩽ n, we define

φs,τ⃗ (x3, x4, . . . , xn) :=∑
xn∈An·βn

· · ·
∑

x3∈A3·β3

card
((

A2 · β2 +
n∑

i=3
xi − s ·

n∑
i=1

βi

)⋂
A1 · β1

)
.

Then, it follows from Proposition 54 that

2SD(τ⃗(Share(0)) , τ⃗(Share(s))) = 2n−1

pn−1 ·
∣∣∣∣φ0,τ⃗ (x3, . . . , xn)− φs,τ⃗ (x3, . . . , xn)

∣∣∣∣.
It suffices to prove the result when τ⃗ = ⃗LSB (the proof for arbitrary physical bit leakage is
similar). In this case, note that A1 = A2 = E = F+ · 2. Therefore, we have

card
((

A2 · β2 +
n∑

i=3
xi − s ·

n∑
i=1

βi

)⋂
A1 · β1

)

= card
((

F+ · 2 · β2 +
n∑

i=3
xi − s ·

n∑
i=1

βi

)⋂
F+ · 2 · β1

)

= card
((

F+ · β2 + 2−1 ·

(
n∑

i=3
xi − s ·

n∑
i=1

βi

))⋂
F+ · β1

)

= Σ(∆(s)
x3,...,xn)

β−1
1 ,β−1

2
,

where ∆(s)
x3,...,xn

:= 2−1 · (
∑n

i=3 xi − s ·
∑n

i=1 βi). Similar to the proof of Lemma 11 in
Appendix D.1, we have

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
= 2n−2

pn−1 ·

∣∣∣∣∣∣
∑

xn∈E·βn

· · ·
∑

x3∈E·β3

(
Σ(∆(0)

x3,...,xn)
β−1

1 ,β−1
2

− Σ(∆(s)
x3,...,xn)

β−1
1 ,β−1

2

)∣∣∣∣∣∣
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⩽
2n−2

pn−1 ·
∑

xn∈E·βn

· · ·
∑

x3∈E·β3

∣∣∣∣(Σ(∆(0)
x3,...,xn)

β−1
1 ,β−1

2
− Σ(∆(s)

x3,...,xn)
β−1

1 ,β−1
2

)∣∣∣∣ (By triangle inequality)

Suppose ShamirSS(2, 2, (β1, β2)) have ε insecurity against LSB. Then, it follows from
Lemma 11 that∣∣∣∣Σ(∆(0)

x3,...,xn)
β−1

1 ,β−1
2

− Σ(∆(s)
x3,...,xn)

β−1
1 ,β−1

2

∣∣∣∣ ⩽ 2εp. (18)

Applying the above inequality for every term under the summand yields:

2SD
(
⃗LSB(Share(0)) , ⃗LSB(Share(s))

)
⩽

2n−2

pn−1 ·
∑

xn∈E·βn

· · ·
∑

x3∈E·β3

2εp

⩽
2n−2

pn−1 · (p/2)· · · (p/2)︸ ︷︷ ︸
(n−2)-times

·2εp

= 2ε,

which completes the proof. ◀

H Attack on ShamirSS(3, 3, α⃗)

Consider ShamirSS(3, 3, α⃗) and the underlying prime field F of order p = 4w2 + 6w+ 9 where
w ⩾ 4 and w ̸= 0 mod 3. The evaluation places are α⃗ = (1, σ, σ2) for σ = 2w · 3−1 ∈ Fp.

▷ Claim 55.
(
2w · 3−1)3 = 1 mod p when p = w2 + 6w + 9 and w ⩾ 4.

Proof.
(
2w · 3−1)3 = 1 mod p ⇐⇒ (2w)3−33 = 0 mod p ⇐⇒ (2w−3)·(4w2+6w+9) = 0

mod p holds since p = 4w2 + 6w + 9. ◀

Observe that 2w <
√
p and 3 < √p. Then, by our classifier in Figure 1, [1 : σ] is a good

evaluation place since [1 : σ] = [3 : 2w], gcd(3, 2w) = 1, and 3 · 2w is an even integer.
Note that 1 + σ + σ2 = 1; therefore, this secret sharing inherits the vulnerability of the

additive secret sharing against LSB leakage [43]. Therefore, ShamirSS(3, 3, α⃗) is insecure
against LSB leakage, where its insecurity is ⩾ (2/π)3 ⩾ 0.25 [45, 19].

I Example of Secure Evaluation places against Physical Bit Leakage

We consider ShamirSS(n = 2, k = 2, (α1, α2)) over the prime field F of order p = 2λ − 1
– a Mersenne prime. We deduced earlier that the security of (α1, α2) is identical to the
security of all (u, v) in the equivalence class [α1 : α2]. Note that [α1 : α2] is identical to the
equivalence class [1 : α], where α = α2α

−1
1 . The equivalence class [1 : α] is secure if and only

if all the following equivalence classes{
[1 : α], [1 : 21 · α], [1 : 22 · α], . . . , [1 : 2λ−1 · α]

}
are secure against the PHYS leakage.

The elements generated by 2, ⟨2⟩ = {1, 2, 22, . . . , 2λ−1}, is a cyclic subgroup of F ∗. Let
α · ⟨2⟩ denote the coset {α, 2 · α, . . . , 2λ−1 · α} ∈ F ∗/⟨2⟩. Furthermore, the equivalence class
[1 : α] is secure against arbitrary physical bit leakage if (and only if) the equivalence classes
[1 : α′] are secure against arbitrary physical bit leakage, for all α′ ∈ α · ⟨2⟩.
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So, in the table below, when we mention α, it implies that any (α1, α2) ∈ [1 : α′] is secure
against physical bit leakage attacks, where α′ ∈ α⟨2⟩.

▶ Remark 56 (Adversarial LLL: A worst-case analysis). For one (α1, α2), there may be multiple
(u, v) ∈ [α1, α2] that the LLL algorithm can output. The output of the LLL algorithm is
crucial in assessing whether evaluation places are secure. The LLL output can change our
algorithm’s output in Figure 2 from “secure” to “may be insecure.”

For example, consider the prime p = 127 and (α1, α2) = (1, 23). In this case, B =⌈
23/4√p

⌉
= 19. Note that (−11, 1) ∈ [α1 : α2] and (6, 11) ∈ [α1 : α2]. If the LLL algorithm

returns (11,−1), our algorithm will declare “may be insecure.” If the LLL algorithm returns
(6, 11), our algorithm will declare “secure.”

Consider an “adversarial LLL” algorithm implementation for the worst-case evaluation.
On input (α1, α2), if there is (u, v) ∈ [α1 : α2] that makes our algorithm in Figure 2 output
“may be insecure,” the adversarial LLL outputs that (u, v).

For example, the element “95” in Table 1 represents the following. Any (α1, α2) ∈ [1 : α′]
is secure against physical bit leakage attacks, where α′ ∈ 95⟨2⟩. Note that

95 · ⟨2⟩ = {95, 2 · 95, 22 · 95, . . . , 212 · 95}
= {95, 190, 380, 760, 1520, 3040, 6080, 3969, 7938, 7685, 7179, 6167, 4143}

Corollary 20 presents explicit evaluation places (α1, α2) ∈
[
1: 2⌊λ/2⌋ − 1

]
such that for

security parameter λ,

εPHYS(α⃗) ⩽
4 ·
(
2⌊λ/2⌋ + 2⌈λ/2⌉)− 6

p
.

When λ = 13 and p = 213 − 1, it implies that [1 : 63] would have εPHYS(α⃗) ≲ 0.093.
However, 63 · ⟨2⟩ is not listed in Table 1 because the “adversarial LLL” algorithm may pick
(u, v) = (1, 63) which is characterized as “may be insecure” by our algorithm in Figure 2.

I.1 Finding secure evaluation places for n = k > 2
Consider the derandomization problem for n = k = 3. Recall that we would have

β1 = 1
α1(α1 − α2)(α1 − α3) and β2 = 1

α2(α2 − α1)(α2 − α3) .

Suppose our target is to ensure that β1
β2

= γ; that is, the equivalence class [1 : γ] are good
evaluation places for ShamirSS(2, 2). Substituting β1 and β2 into the condition, we get

γ := β1

β2
= −α2(α2 − α3)

α1(α1 − α3)

The following assignments should clearly satisfy the above constraint:{
α1 − α3 = α2

α2 − α3 = −γ · α1

which, upon solving in terms of α3, we get

α1 = 2
1 + γ

· α3 and α2 = 1− γ
1 + γ

· α3.

Specifically, α1 = 2, α2 = 1− γ, and α3 = 1 + γ suffices, and we can ensure that [β1 : β2] is
secure with these evaluation places.
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We can further generalize this argument to n = k > 3 cases; concretely, one can choose
the following evaluation places (and so does their equivalence class).

α1 = (n− 1)
α2 = (n− 1)− (1 + γ) = (n− 2− γ)
αj = (j − 2) · (1 + γ). (For j ∈ {3, 4, 5, . . . , n})

95 97 99 101 103 107 111 113 119 121 123
125 131 133 135 137 139 143 145 147 151 153
155 157 159 161 163 165 169 173 175 179 181
183 185 187 191 197 201 203 207 209 211 213
215 217 219 221 223 225 227 229 231 233 235
237 239 243 245 247 249 251 253 267 269 271
275 277 279 281 285 287 291 293 295 297 299
303 305 309 313 317 319 323 325 329 331 333
335 337 339 349 351 355 357 359 361 363 365
369 371 373 375 377 379 391 393 395 397 399
401 403 405 407 411 413 415 419 423 427 429
433 435 437 441 443 445 447 453 457 459 461
465 467 469 471 473 475 477 487 491 493 495
497 499 501 503 505 549 551 553 555 557 559
563 567 569 573 575 581 583 587 589 591 595
599 601 603 607 611 613 615 617 619 621 623
629 633 637 651 653 655 661 667 669 671 675
677 679 687 693 695 697 699 701 713 715 717
719 725 727 729 731 735 739 743 747 751 755
757 759 761 763 795 797 799 805 807 811 813
815 821 823 825 829 843 845 847 855 857 859
863 869 871 873 875 877 879 883 885 887 889
891 893 915 917 921 923 925 927 933 937 939
943 947 949 951 953 955 957 959 971 973 975
979 987 989 991 997 1001 1005 1007 1011 1175 1181
1183 1191 1197 1199 1205 1207 1211 1213 1227 1231 1235
1237 1239 1245 1247 1253 1255 1259 1261 1263 1267 1275
1323 1327 1333 1335 1339 1341 1343 1355 1357 1359 1371
1373 1375 1387 1389 1395 1397 1403 1405 1431 1435 1439
1447 1451 1461 1467 1469 1485 1487 1491 1495 1499 1501
1503 1511 1515 1519 1525 1655 1661 1691 1693 1695 1703
1709 1711 1717 1723 1725 1727 1743 1751 1757 1759 1773
1775 1783 1787 1851 1853 1855 1871 1879 1885 1887 1899
1901 1903 1909 1915 1963 1965 1967 1973 1975 1979 1981
1983 2007 2011 2013 2015 2775 2783 2795 2799 2807 2911
2927 2935 2939 2991 2999 3003 3035 3039 3055 3551 3575

Table 1 Secure Evaluation Places against Physical Bit Leakage when p = 213 − 1. If an element
α ∈ F appears in the list above, it implies the following. Any evaluation places (α1, α2) ∈ [1 : α′],
where α′ ∈ α · ⟨2⟩, is secure against all physical bit leakage attacks.
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J Figure for square waves
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