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Protagonists: Relevant Secret-sharing Schemes

Additive Secret-sharing Scheme (n parties)

@ Secret: s € I

@ Secret Shares: Pick (s1,52,...,5, 1) randomly from F and define s,, = s — Z;';l S;.

Shamir’s Secret-sharing Scheme ShamirSS(n, k, X) (n parties & reconstruction threshold k)

@ Secret: s € F
@ Secret Shares
© Pick a random F-polynomial P(Z) such that: deg P < k and P(0) = s
@ Pick arbitrary distinct evaluation places X, X»,..., X, € (F*)"
© Define secret shares of each party s; = P(X1), s2 = P(X2), ..., and s, = P(X,,)

Secret s

Secret Shares: S1 S2 S3 e Sn L



Fundamental to Nearly All Cryptography & Privacy

Applications of Shamir's secret-sharing scheme

@ Secure Computation [
]
@ Threshold Cryptography [

@ Access Control |

@ Protection against Side Channel Attacks: Masking |
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Attack: Threshold Corruption (all or nothing) Leaking partial information

3/21



Traditional Security Notion

Secret s

Secret s
/@ /EB\
Secret Shares: 51 52 $3 -+ Sp $1 S9 S$3 .- Sy
L1 Lor L3 L
S R ly

Attack: Threshold Corruption (all or nothing)
Definition: Leakage Resilience against a Leakage Family

Leaking partial information

@ For any leakage attack £ in the leakage family
@ For any two secrets s and s’

@ Advantage of distinguishing the secrets (using the leakage from the secret shares) is small

SD (E(Share(s)) : E(Share(s'))) < small
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Adversarial Model (for Today's Talk)
Physical Bit Leakage [Ishai-Sahai-Wagner (CRYPTO-2003)]

o Field elements are stored in their binary representation

@ Adversary can leak physical bits from the stored secret shares

Secret s Secret s’

Secret Shares: 51 52 S3  --- Sp sh sh 54 sl
Leakge Function: i Ly 3 Lo 3 L3 3 Ly, L1 1Ly 1L L,
v v v v v v v v
Leaked Physical Bits: ¢, (5 (s ln A ,
L(Share(s)) L(Share(s'))
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@ Secret Shares of Additive Secret-Sharing: Random s1, 85,..., 8, S.t. §1+ 8o+ -+ 5, = s

o Attack: Leak the LSB of each secret share. (¢; = LSB(s;))

0, ifzef0,2,4,...,p—1}

1, otherwise.

@ Parity of Parity Attack Distinguisher [Maji-Nguyen-PaskinCherniavsky-Suad-Wang
(EUROCRYPT-2021)] outputs 1 & ly @+ b ),

LSB(z) =

(s1,82) | (0,0) (1,p—=1) (2p=2) --- (p—=11)
0 &l 0 1 1 oo 1
(81)52) (071) (17()) (27p_ 1) (p_ 172)
l &l 1 1 0 s 0
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Threat Example 1: Parity-of-Parity Attack on Additive Secret-Sharing

@ Secret Shares of Additive Secret-Sharing: Random s, so, ..., SpSt. s1+so+---+sp =35

o Attack: Leak the LSB of each secret share. (¢; = LSB(s;))
0, ifze{0,2,4,...,p—1}
1, otherwise.
e Parity of Parity Attack Distinguisher [
| outputs £y @ ly @+ D Ly,

LSB(z) =

(s1,82) | (0,0) (L,p—1) (2,p—2) --- (p—1L1)
s=0 | ({1,42) | (0,0) (1,0) (0,1) (0,1)
Uy @ Ly 0 1 1 1
(31-,52) (07 1) (170) (2,[}— 1) (p_ 172)
s=1 () [0 (L) 0.0) 0.0)
l @l 1 1 0 0

Theorem (Threat Assessment: Parity-of-Parity Attack)

For additive secret-sharing scheme, there is an attack that leaks one physical bit from each
secret share and can distinguish two secrets with advantage > (2/7)".

[
]
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Threat Example 2: Careless Evaluation Place Choice for
Shamir's secret-sharing

Vulnerability of Shamir against LSB Leakage

@ Assume p =1 mod k

o Let {w,w? ... ,w" =1} C F* be roots of the equation Z" — 1 =0

e Suppose P(Z) = po+ p1Z +p2Z% +- - + pr—1Z"~" such that pg = s
@ Suppose X = pw, Xy = pw?, ..., X}, = pw”, where p € F*
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Threat Example 2: Careless Evaluation Place Choice for
Shamir's secret-sharing

Vulnerability of Shamir against LSB Leakage

@ Assume p =1 mod k
o Let {w,w? ... ,w" =1} C F* be roots of the equation Z" — 1 =0
@ Suppose P(Z) =po +p1Z + paZ% +- - + pr_1Z*! such that py = s

@ Suppose X = pw, Xy = pw?, ..., X}, = pw”, where p € F*
P(X1) =po +pip- (@) +pap?- (W) oo Fppoaptl (wl)k:fl
P(X2) = Do +Z)l[) . <w2> +p2p2 . (w2)2 e +I)k:—1pkil . (WQ)]@*I
P(Xp) =po +pip- (W) +p2p®- (WF)° o Aot (WF)

Observation

k
S1+ 8o+ -+ s = P(X;)=ks
i=1
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Research Question

Security against Leakage Attacks

@ How to choose the Modulus and Evaluation Places for Shamir’s Secret-sharing Scheme so
it is leakage resilient?

@ Adversarial model: Physical bit leakage from the secret shares
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What is Known

Theorem (Monte-Carlo Construction [Maji-PaskinCherniavsky-Suad-Wang (CRYPTO-2021)])

Consider Shamir's Secret-sharing Scheme with random evaluation places. If the total leakage
m - n is less than the entropy k - A\, then this scheme is resilient to m bit local leakage from
every secret share; except with exp(—(k — 1) - \) probability
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What is Known

Theorem (Monte-Carlo Construction [Maji-PaskinCherniavsky-Suad-Wang (CRYPTO-2021)])

Consider Shamir's Secret-sharing Scheme with random evaluation places. If the total leakage
m - n is less than the entropy k - A\, then this scheme is resilient to m bit local leakage from
every secret share; except with exp(—(k — 1) - \) probability

Security against Leakage Attacks

How to choose the Modulus and Evaluation Places of Shamir's Secret-sharing Scheme
ShamirSS(n, k, X)?

A

[ ] recently called for recommendations and guidelines to improve the security of
multi-party threshold schemes.

Full Derandomization
@ Derandomization is the problem we want to tackle today
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Example of secure evaluation places for ShamirSS(2,2, X) when p = 8191

95
137
175
217
249
297
339
391
429
471
553

@ Each element X in the above table represents the set of elements
X2

97
139
179
219
251
299
349
393
433
473
555

99
143
181
221
253
303
351
395
435
475
557

101
145
183
223
267
305
355
397
437
477
559

103
147
185
225
269
309
357
399
441
487
563

107
151
187
227
271
313
359
401
443
491
567

111
153
191
229
275
317
361
403
445
493
569

113
155
197
231
277
319
363
405
447
495
573

(X, X-2,X-22

119
157
201
233
279
323
365
407
453
497
575

121
159
203
235
281
325
369
411
457
499
581

123
161
207
237
285
329
371
413
459
501
583

125
163
209
239
287
331
373
415
461
503
587

@ Each element X in the above table stands for evaluation places (1, X)

@ For example, the element 95 stands for

95 - (2) ={95,2-95,22.95,...,2'2.95}

={95, 190, 380, 760, 1520, 3040, 6080, 3969, 7938, 7685, 7179, 6167, 4143}

131
165
211
243
291
333
375
419
465
505
589

133
169
213
245
293
335
377
423
467
549
591

135
173
215
247
295
337
379
427
469
551
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Question for Today’'s Technical Part of the Talk

o What evaluation places can make Shamir’s secret-sharing scheme
(ShamirSS(2, 2, X'), ShamirSS(3, 2, X)) secure against (m = 1)-bit leakage attack?

Definition: Leakage Resilience against a Leakage Family

© For any leakage attack L in the leakage family
@ For any two secrets s and s’

@ Advantage of distinguishing the secrets (using the leakage from the secret shares) is small

SD (E(Share(s)) , 5(Share(s’))) < small

10/21



New Result: Our Recommendation for Modulus & Evaluation Places

e Recommended Modulus: A-bit Mersenne prime p = 2* — 1. (For example, 3, 7, 31, 127,
8191, 131071, 524287, 2147483647, etc.)

@ Evaluation places:

Decision Algorithm to identify Secure Evaluation Places against Physical Bit attack

Input. Distinct evaluation places X, Xo € F*, F'is prime field of order p, a Mersenne prime
Output. Decide if ShamirSS(2,2, (X, X5)) is secure to all physical bit leakage attacks

Algorithm.
Q Ifthereis k € {0,1,...,\ — 1} such that 2" X; = X5: Return insecure
Q@ For ke {0,1,...,\—1}:
@ Call the decision algorithm to find secure evaluation places against LSB attack for

ShamirSS(2,2, (2% - X1, X2))
@ If the algorithm returns “may be insecure,” return may be insecure

@ Declare ShamirSS(2,2, (X1, X5)) is secure against all physical bit attacks.
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Algorithm to identify Secure Evaluation Places against LSB leakage

Decision Algorithm to identify Secure Evaluation Places against LSB attack
Input. Distinct evaluation places X, X5 € F'*

Output. Decide whether ShamirSS(2,2, (X1, X5)) is secure to the LSB leakage attack
@ Define the equivalence class
[X1: Xo] := {(u,v): u=A-Xj,o=A-Xo,A€c F*}.

Use the LLL| | algorithm to (efficiently) find
(u,v) € [X1 : Xo] such that for B := [23/*. | /p]
u,v € {—B,—(B—1),...,0,1,...,(B—1),B} mod p.

@ Compute g = ged(|ul,, [v],).
Q If |uf,- \v\p/gz is even: Declare ShamirSS(2, 2, (X, X5)) is secure to LSB leakage attacks.

Q (Else) If [ul, - |U\p/g2 is odd and [u],, - \v\p/g2 > /p: Declare ShamirSS(2,2, (X1, X3)) is
secure to LSB leakage attacks

© (Else) Declare ShamirSS(2, 2, (X1, X5)) against LSB attacks may be insecure
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Algorithm to identify Secure Evaluation Places against LSB leakage

Notation: Length of a Finite Field Element

Consider an element 2 € F, the prime field of order p > 3. Suppose x = 2 mod p, where
2e{-(p—1)/2,...,0,1,...,(p—1)/2} C Z. The length of the element is a function
Il,: = {0,1,...,(p—1)/2} defined below.

2], = o, ifa’e{0,1,...,(p—1)/2}
P =2, ife'e{-(p-1)/2,...,-1}

o For example, if 2 = (p — 1) mod p, then 2’ = —1 € Z and [z|, = 1.
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Algorithm to identify Secure Evaluation Places against LSB leakage

Decision Algorithm to identify Secure Evaluation Places against LSB attack
Input. Distinct evaluation places X, X5 € F'*

Output. Decide whether ShamirSS(2,2, (X1, X5)) is secure to the LSB leakage attack
@ Define the equivalence class
[X1: Xo] := {(u,v): u=A-Xj,o=A-Xo,A€c F*}.

Use the LLL| | algorithm to (efficiently) find
(u,v) € [X1 : Xo] such that for B := [23/*. | /p]
u,v € {—B,—(B—1),...,0,1,...,(B—1),B} mod p.

@ Compute g = ged(|ul,, [v],).
Q If |uf,- \v\p/gz is even: Declare ShamirSS(2, 2, (X, X5)) is secure to LSB leakage attacks.

Q (Else) If [ul, - |U\p/g2 is odd and [u],, - \v\p/g2 > /p: Declare ShamirSS(2,2, (X1, X3)) is
secure to LSB leakage attacks

© (Else) Declare ShamirSS(2, 2, (X1, X5)) against LSB attacks may be insecure
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From LSB to Sign

Definition: sign of lines
o We interpret the finite field /" as the set of elements {0,1,...,p — 1}.
@ We introduce a Boolean function sgn,,: I — {+1} defined as follows.

+1, ifTe€{0,1,...,(p—1)/2} mod p

sgn,,(T) = {17 ifTe{-(p—1)/2,...,—1} mod p.

\.

Reduction: LSB to Sign Leakage

Leaking the “LSB of each secret share” is equivalent to leaking the “sign of each secret share”
(the leakage joint distributions are identical)

.
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From LSB to Sign

Definition: sign of lines

o We interpret the finite field /" as the set of elements {0,1,...,p — 1}.
@ We introduce a Boolean function sgn,,: I — {+1} defined as follows.

+1, ifTe{0,1,...,(p—1)/2} mod p

sgn,(T') = {17 ifTe{-(p—-1)/2,...,~1} mod p.

.

Reduction: LSB to Sign Leakage

Leaking the “LSB of each secret share” is equivalent to leaking the “sign of each secret share”
(the leakage joint distributions are identical)

A

If the frequencies of signs for secret s = 0 are not (close to) uniform, then there will be a secret
with very different frequency of sign.

\
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e Example: p = 31,ShamirSS(2,2, (1, 3)).
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Orthogonality of Signs of Lines

Orthogonality of signs of lines

o Uniformity of all frequencies is equivalent as the line sgn, (X - 7') is (nearly) orthogonal
to sgn, (X - 7). We call this “orthogonality of signs of lines”.

o Leakage resilient is equivalent to “orthogonality of signs of lines”.

Problem

How do we know if sgn (X, - 7") and sgn, (X, - T) are orthogonal to each other?
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Orthogonality of Signs of Lines

Definition: Inner product of sign of lines
e We interpret the finite field /" as the set of elements {0,1,...,p — 1}.
o We introduce a Boolean function sgn,,: I — {+1} defined as follows.
+1, ifTe€{0,1,...,(p—1)/2} mod p

sgnp(T) = {—17 ifTe{-(p—1)/2,...,—1} mod p.

@ Inner product: (sgn,(X; -T'),sgn,(Xz - T))

sgn,(1-7) sgn,(3-7) sgn,(1-7) -sgn,(3-T)

ol 1= — —

I

1

‘ 0 —+—+-—++++— |
0 t t el T 0 ‘

For I R

I I oror ey [ [
IR N RN N R
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Orthogonality of Signs of Lines

Estimating the exponential sum

Si= ) sgn,(Xp-T)-sgn,(Xy - T).
TeF
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o Define the periodic function ¢: R — {£1} as p(t) := sgnsin(27t).

Estimating the summation using integral

e Family of square waves

@ Define the integral

e /1 o(X: 1) - o(Xs - ) dt.

o(t) = sgnsin(27t)

©(3t) = sgnsin(2m - 3 - t)

Y
1
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Quality of Estimation

Problem

@ The quality of transferring from integral estimate to summation estimate depends on the
number of oscillations in the function.

o It is proportional to (| X1, + [X2[,)/p.

@ The integral estimate is useless if the evaluation places are very large.
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Dirichlet's Approximation Theorem

o Change basis from (X1, X>) to (u,v), where X3 : X5 = u: v and [u],

@ How? Use Dirichlet’s Approximation Theorem

@ Instead of the inner product

Y= Z sgn,, ( -sgn,(Xa - T)
TEF
we will estimate the following equivalent summation

Y= Z sgn,,(u-T)-sgn,(v-T)

TeFr

o Transference error: (proportional to) (|ul, + [v],)/p < 1/\/p

:|v],, are small
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Dirichlet's Approximation Theorem

o Change basis from (X1, X>) to (u,v), where X3 : X5 = u: v and [u],

@ How? Use Dirichlet’s Approximation Theorem

@ Instead of the inner product

Y= Z sgn,, ( -sgn,(Xa - T)
TEF
we will estimate the following equivalent summation

Y= Z sgn,,(u-T)-sgn,(v-T)

TeFr

o Transference error: (proportional to) (|ul, + [v],)/p < 1/\/p

:|v],, are small

V.

Dirichlet problem is inefficient to solve.

LLL to the rescue
@ We introduce a slack of 1.68

@ Solve it efficiently with LLL algorithm
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Example of secure evaluation places for ShamirSS(2,2, X) when p = 8191

95
137
175
217
249
297
339
391
429
471
553

@ Each element X in the above table represents the set of elements
X2

@ Each element X stands for the equivalence class of evaluation places |1 :
@ For example, the element 95 stands for

97
139
179
219
251
299
349
393
433
473
555

99
143
181
221
253
303
351
395
435
475
557

101
145
183
223
267
305
355
397
437
477
559

103
147
185
225
269
309
357
399
441
487
563

107
151
187
227
271
313
359
401
443
491
567

111
153
191
229
275
317
361
403
445
493
569

113
155
197
231
277
319
363
405
447
495
573

(X, X-2,X-22

95 - (2) ={95,2-95,22.95,...,2'2.95}

={95, 190, 380, 760, 1520, 3040, 6080, 3969, 7938, 7685, 7179, 6167, 4143}

119
157
201
233
279
323
365
407
453
497
575

121
159
203
235
281
325
369
411
457
499
581

123
161
207
237
285
329
371
413
459
501
583

125
163
209
239
287
331
373
415
461
503
587

131
165
211
243
291
333
375
419
465
505
589

X]

133
169
213
245
293
335
377
423
467
549
591

135
173
215
247
295
337
379
427
469
551
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o We have the analogous result for ShamirSS(3,2, X ) which allows one multiplication in
GMW types MPC protocols

@ We also have results for composite order fields
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Generalize to any n = k

Security against arbitrary Physical Bit Leakage for ShamirSS(n.yn,f)

Input. Distinct evaluation places X1, Xo, ..., X,, € F*, F is a prime field of order p = 2* — 1.
Output. Determine whether ShamirSS(n,n,)?) is secure against physical bit leakage.

—il
@ Foreachic {1,2,...,n}: Compute and save [3; = (Xi [T (X — Xj)>

@ Foreach je{1,2,...,n}:
@ Foreach e {j+1,...,n}:
@ Check if (55, ¢) are secure evaluation places for ShamirSS(2, 2, (35, ¢)) =
@ If yes, return secure

© Return may be insecure
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